--- license: llama3.1 --- Amazingly quick to inference on Ada GPUs like 3090 Ti. in INT8. In VLLM I left it on a task for 10 minutes with prompt caching, average fixed input around 2000, variable input around 200 and output around 200. Averaged over a second, that's 22.5k t/s prompt processing and 1.5k t/s generation. Averaged over an hour that's 81M input tokens and 5.5M output tokens. Peak generation speed I see is around 2.6k/2.8k t/s. Quantized on H100. On 3090 Ti I was OOMing. Creation script: ```python from transformers import AutoTokenizer from datasets import Dataset from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot from llmcompressor.modifiers.quantization import GPTQModifier import random model_id = "NousResearch/Hermes-3-Llama-3.1-8B" num_samples = 256 max_seq_len = 8192 tokenizer = AutoTokenizer.from_pretrained(model_id) max_token_id = len(tokenizer.get_vocab()) - 1 input_ids = [[random.randint(0, max_token_id) for _ in range(max_seq_len)] for _ in range(num_samples)] attention_mask = num_samples * [max_seq_len * [1]] ds = Dataset.from_dict({"input_ids": input_ids, "attention_mask": attention_mask}) recipe = GPTQModifier( targets="Linear", scheme="W8A8", ignore=["lm_head"], dampening_frac=0.01, ) model = SparseAutoModelForCausalLM.from_pretrained( model_id, device_map="auto", ) oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, ) model.save_pretrained("NousResearch_Hermes-3-Llama-3.1-8B.w8a8") ```