File size: 2,160 Bytes
59c715d 7b39dc3 59c715d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/bart-large
model-index:
- name: bart-finetuned-kwsylgen-64-simple_input_BARTlarge
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-finetuned-kwsylgen-64-simple_input_BARTlarge
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1785
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0641 | 0.18 | 500 | 0.2451 |
| 0.2194 | 0.36 | 1000 | 0.2228 |
| 0.1989 | 0.54 | 1500 | 0.2086 |
| 0.1888 | 0.72 | 2000 | 0.2027 |
| 0.177 | 0.9 | 2500 | 0.1976 |
| 0.1703 | 1.08 | 3000 | 0.1933 |
| 0.1647 | 1.26 | 3500 | 0.1928 |
| 0.159 | 1.44 | 4000 | 0.1890 |
| 0.1538 | 1.61 | 4500 | 0.1864 |
| 0.151 | 1.79 | 5000 | 0.1857 |
| 0.1471 | 1.97 | 5500 | 0.1828 |
| 0.1436 | 2.15 | 6000 | 0.1814 |
| 0.1435 | 2.33 | 6500 | 0.1806 |
| 0.141 | 2.51 | 7000 | 0.1799 |
| 0.1393 | 2.69 | 7500 | 0.1790 |
| 0.1388 | 2.87 | 8000 | 0.1785 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|