File size: 2,160 Bytes
59c715d
 
 
 
7b39dc3
59c715d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/bart-large
model-index:
- name: bart-finetuned-kwsylgen-64-simple_input_BARTlarge
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-finetuned-kwsylgen-64-simple_input_BARTlarge

This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1785

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0641        | 0.18  | 500  | 0.2451          |
| 0.2194        | 0.36  | 1000 | 0.2228          |
| 0.1989        | 0.54  | 1500 | 0.2086          |
| 0.1888        | 0.72  | 2000 | 0.2027          |
| 0.177         | 0.9   | 2500 | 0.1976          |
| 0.1703        | 1.08  | 3000 | 0.1933          |
| 0.1647        | 1.26  | 3500 | 0.1928          |
| 0.159         | 1.44  | 4000 | 0.1890          |
| 0.1538        | 1.61  | 4500 | 0.1864          |
| 0.151         | 1.79  | 5000 | 0.1857          |
| 0.1471        | 1.97  | 5500 | 0.1828          |
| 0.1436        | 2.15  | 6000 | 0.1814          |
| 0.1435        | 2.33  | 6500 | 0.1806          |
| 0.141         | 2.51  | 7000 | 0.1799          |
| 0.1393        | 2.69  | 7500 | 0.1790          |
| 0.1388        | 2.87  | 8000 | 0.1785          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2