File size: 31,797 Bytes
3fe70ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
---
language:
- multilingual
- zh
- ja
- ar
- ko
- de
- fr
- es
- pt
- hi
- id
- it
- tr
- ru
- bn
- ur
- mr
- ta
- vi
- fa
- pl
- uk
- nl
- sv
- he
- sw
- ps
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:CoSENTLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Bottomless Mug
  sentences:
  - You are always safe.
  - That trend isn't very known yet
  - Eleanor Clift göreve koşuyor.
- source_sentence: Tripp has a job.
  sentences:
  - They are having money problems.
  - Malignite aniden ortaya çıkar.
  - Mezarlar derin ormanlarda saklandı.
- source_sentence: There are rules
  sentences:
  - There are more villians than heros.
  - The directions should be read.
  - Mezarlar derin ormanlarda saklandı.
- source_sentence: K is a musician.
  sentences:
  - Klimt draws hotdogs.
  - Ed Wood hiç mahkemeye çıkmadı.
  - Çeçen Rusya yönetimi ele geçirdi.
- source_sentence: We moved closer.
  sentences:
  - Clinton is unaware of the process.
  - Nesil deneyimleri anlamsızdır.
  - Hormonların etkileri vardır.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: tr ling
      type: tr_ling
    metrics:
    - type: pearson_cosine
      value: 0.058743115070889876
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.059526247945378225
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.04582145815494953
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.04331287037397966
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.04709170917685587
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.04407504959649961
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.08477622619519222
      name: Pearson Dot
    - type: spearman_dot
      value: 0.08243745050110735
      name: Spearman Dot
    - type: pearson_max
      value: 0.08477622619519222
      name: Pearson Max
    - type: spearman_max
      value: 0.08243745050110735
      name: Spearman Max
---

# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [MoritzLaurer/multilingual-nli-26lang-2mil7](https://huggingface.co/datasets/MoritzLaurer/multilingual-nli-26lang-2mil7) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [MoritzLaurer/multilingual-nli-26lang-2mil7](https://huggingface.co/datasets/MoritzLaurer/multilingual-nli-26lang-2mil7)
- **Languages:** multilingual, zh, ja, ar, ko, de, fr, es, pt, hi, id, it, tr, ru, bn, ur, mr, ta, vi, fa, pl, uk, nl, sv, he, sw, ps
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'We moved closer.',
    'Clinton is unaware of the process.',
    'Nesil deneyimleri anlamsızdır.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `tr_ling`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.0587     |
| spearman_cosine    | 0.0595     |
| pearson_manhattan  | 0.0458     |
| spearman_manhattan | 0.0433     |
| pearson_euclidean  | 0.0471     |
| spearman_euclidean | 0.0441     |
| pearson_dot        | 0.0848     |
| spearman_dot       | 0.0824     |
| pearson_max        | 0.0848     |
| **spearman_max**   | **0.0824** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### MoritzLaurer/multilingual-nli-26lang-2mil7

* Dataset: [MoritzLaurer/multilingual-nli-26lang-2mil7](https://huggingface.co/datasets/MoritzLaurer/multilingual-nli-26lang-2mil7) at [510a233](https://huggingface.co/datasets/MoritzLaurer/multilingual-nli-26lang-2mil7/tree/510a233972a0d7ff0f767d82f46e046832c10538)
* Size: 25,000 training samples
* Columns: <code>premise_original</code>, <code>hypothesis_original</code>, <code>score</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise_original                                                                  | hypothesis_original                                                               | score                                                              | sentence1                                                                          | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                                                | string                                                                             | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 29.3 tokens</li><li>max: 107 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.62 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>0: ~34.50%</li><li>1: ~33.30%</li><li>2: ~32.20%</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 28.28 tokens</li><li>max: 101 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.39 tokens</li><li>max: 38 tokens</li></ul> |
* Samples:
  | premise_original                                                                                                                                                                                                                                                 | hypothesis_original                                                                                                                                                  | score          | sentence1                                                                                                                                                                                                                                                                   | sentence2                                                                                                                                          |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>N, the total number of LC50 values used in calculating the CV(%) varied with organism and toxicant because some data were rejected due to water hardness, lack of concentration measurements, and/or because some of the LC50s were not calculable.</code> | <code>Most discarded data was rejected due to water hardness.</code>                                                                                                 | <code>1</code> | <code>N, CV'nin hesaplanmasında kullanılan LC50 değerlerinin toplam sayısı (%) organizma ve toksik madde ile çeşitlidir, çünkü bazı veriler su sertliği, konsantrasyon ölçümlerinin eksikliği ve / veya LC50'lerin bazıları hesaplanamaz olduğu için reddedilmiştir.</code> | <code>Atılan verilerin çoğu su sertliği nedeniyle reddedildi.</code>                                                                               |
  | <code>As the home of the Venus de Milo and Mona Lisa, the Louvre drew almost unmanageable crowds until President Mitterrand ordered its re-organization in the 1980s.</code>                                                                                     | <code>The Louvre is home of the Venus de Milo and Mona Lisa.</code>                                                                                                  | <code>0</code> | <code>Venus de Milo ve Mona Lisa'nın evi olarak Louvre, Başkan Mitterrand'ın 1980'lerde yeniden düzenlenmesini emredene kadar neredeyse yönetilemez kalabalıklar çekti.</code>                                                                                              | <code>Louvre, Venus de Milo ve Mona Lisa'nın evidir.</code>                                                                                        |
  | <code>A year ago, the wife of the Oxford don noticed that the pattern on Kleenex quilted tissue uncannily resembled the Penrose Arrowed Rhombi tilings pattern, which Sir Roger had invented--and copyrighted--in 1974.</code>                                   | <code>It has been recently found out a similarity between the pattern on the recent Kleenex quilted tissue and the one of the Penrose Arrowed Rhombi tilings.</code> | <code>0</code> | <code>Bir yıl önce Oxford'un karısı, Kleenex kapitone dokudaki desenin 1974'te Sir Roger'ın icat ettiği -ve telif hakkı olan - Penrose Arrowed Rhombi tilings desenine benzediğini fark etti.</code>                                                                        | <code>Yakın zamanda, son Kleenex kapitone dokudaki desen ile Penrose Arrowed Rhombi döşemelerinden biri arasında bir benzerlik bulunmuştur.</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### MoritzLaurer/multilingual-nli-26lang-2mil7

* Dataset: [MoritzLaurer/multilingual-nli-26lang-2mil7](https://huggingface.co/datasets/MoritzLaurer/multilingual-nli-26lang-2mil7) at [510a233](https://huggingface.co/datasets/MoritzLaurer/multilingual-nli-26lang-2mil7/tree/510a233972a0d7ff0f767d82f46e046832c10538)
* Size: 5,000 evaluation samples
* Columns: <code>premise_original</code>, <code>hypothesis_original</code>, <code>score</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise_original                                                                 | hypothesis_original                                                               | score                                                              | sentence1                                                                          | sentence2                                                                         |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | int                                                                | string                                                                             | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 30.3 tokens</li><li>max: 99 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>0: ~34.50%</li><li>1: ~29.90%</li><li>2: ~35.60%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 29.94 tokens</li><li>max: 106 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.29 tokens</li><li>max: 52 tokens</li></ul> |
* Samples:
  | premise_original                                                                                                | hypothesis_original                                                            | score          | sentence1                                                                     | sentence2                                                        |
  |:----------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:---------------|:------------------------------------------------------------------------------|:-----------------------------------------------------------------|
  | <code>But the racism charge isn't quirky or wacky--it's demagogy.</code>                                        | <code>The accusation of prejudice based on a pedestrian kind of hatred.</code> | <code>0</code> | <code>Ama ırkçılık suçlaması tuhaf ya da tuhaf değil, bu bir demagoji.</code> | <code>Yaya nefretine dayanan önyargı suçlaması.</code>           |
  | <code>Why would Gates allow the publication of such a book with his byline and photo on the dust jacket?</code> | <code>Gates' byline and photo are on the dust jacket</code>                    | <code>0</code> | <code>Gates neden böyle bir kitabın basılmasına izin versin ki?</code>        | <code>Gates'in çizgisi ve fotoğrafı toz ceketin üzerinde.</code> |
  | <code>I am a nonsmoker and allergic to cigarette smoke.</code>                                                  | <code>I do not smoke.</code>                                                   | <code>0</code> | <code>Sigara içmeyen biriyim ve sigara dumanına alerjim var.</code>           | <code>Sigara içmiyorum.</code>                                   |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `ddp_find_unused_parameters`: False

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: False
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | loss   | tr_ling_spearman_max |
|:------:|:----:|:-------------:|:------:|:--------------------:|
| 0.0320 | 25   | 17.17         | -      | -                    |
| 0.0639 | 50   | 16.4932       | -      | -                    |
| 0.0959 | 75   | 16.5976       | -      | -                    |
| 0.1279 | 100  | 15.6991       | -      | -                    |
| 0.1598 | 125  | 14.876        | -      | -                    |
| 0.1918 | 150  | 14.4828       | -      | -                    |
| 0.2238 | 175  | 12.7061       | -      | -                    |
| 0.2558 | 200  | 10.8687       | -      | -                    |
| 0.2877 | 225  | 8.3797        | -      | -                    |
| 0.3197 | 250  | 6.2029        | -      | -                    |
| 0.3517 | 275  | 5.8228        | -      | -                    |
| 0.3836 | 300  | 5.811         | -      | -                    |
| 0.4156 | 325  | 5.8079        | -      | -                    |
| 0.4476 | 350  | 5.8077        | -      | -                    |
| 0.4795 | 375  | 5.8035        | -      | -                    |
| 0.5115 | 400  | 5.8072        | -      | -                    |
| 0.5435 | 425  | 5.8033        | -      | -                    |
| 0.5754 | 450  | 5.8086        | -      | -                    |
| 0.6074 | 475  | 5.81          | -      | -                    |
| 0.6394 | 500  | 5.7949        | -      | -                    |
| 0.6714 | 525  | 5.8079        | -      | -                    |
| 0.7033 | 550  | 5.8057        | -      | -                    |
| 0.7353 | 575  | 5.8097        | -      | -                    |
| 0.7673 | 600  | 5.7986        | -      | -                    |
| 0.7992 | 625  | 5.8051        | -      | -                    |
| 0.8312 | 650  | 5.8041        | -      | -                    |
| 0.8632 | 675  | 5.7907        | -      | -                    |
| 0.8951 | 700  | 5.7991        | -      | -                    |
| 0.9271 | 725  | 5.8035        | -      | -                    |
| 0.9591 | 750  | 5.7945        | -      | -                    |
| 0.9910 | 775  | 5.8077        | -      | -                    |
| 1.0    | 782  | -             | 5.8024 | 0.0330               |
| 1.0230 | 800  | 5.6703        | -      | -                    |
| 1.0550 | 825  | 5.8052        | -      | -                    |
| 1.0870 | 850  | 5.7936        | -      | -                    |
| 1.1189 | 875  | 5.7924        | -      | -                    |
| 1.1509 | 900  | 5.7806        | -      | -                    |
| 1.1829 | 925  | 5.7835        | -      | -                    |
| 1.2148 | 950  | 5.7619        | -      | -                    |
| 1.2468 | 975  | 5.8038        | -      | -                    |
| 1.2788 | 1000 | 5.779         | -      | -                    |
| 1.3107 | 1025 | 5.7904        | -      | -                    |
| 1.3427 | 1050 | 5.7696        | -      | -                    |
| 1.3747 | 1075 | 5.7919        | -      | -                    |
| 1.4066 | 1100 | 5.7785        | -      | -                    |
| 1.4386 | 1125 | 5.7862        | -      | -                    |
| 1.4706 | 1150 | 5.7703        | -      | -                    |
| 1.5026 | 1175 | 5.773         | -      | -                    |
| 1.5345 | 1200 | 5.7627        | -      | -                    |
| 1.5665 | 1225 | 5.7596        | -      | -                    |
| 1.5985 | 1250 | 5.7882        | -      | -                    |
| 1.6304 | 1275 | 5.7828        | -      | -                    |
| 1.6624 | 1300 | 5.771         | -      | -                    |
| 1.6944 | 1325 | 5.788         | -      | -                    |
| 1.7263 | 1350 | 5.7719        | -      | -                    |
| 1.7583 | 1375 | 5.7846        | -      | -                    |
| 1.7903 | 1400 | 5.7838        | -      | -                    |
| 1.8223 | 1425 | 5.7912        | -      | -                    |
| 1.8542 | 1450 | 5.7686        | -      | -                    |
| 1.8862 | 1475 | 5.7938        | -      | -                    |
| 1.9182 | 1500 | 5.7847        | -      | -                    |
| 1.9501 | 1525 | 5.7952        | -      | -                    |
| 1.9821 | 1550 | 5.7528        | -      | -                    |
| 2.0    | 1564 | -             | 5.7933 | 0.0682               |
| 2.0141 | 1575 | 5.65          | -      | -                    |
| 2.0460 | 1600 | 5.7537        | -      | -                    |
| 2.0780 | 1625 | 5.7098        | -      | -                    |
| 2.1100 | 1650 | 5.7149        | -      | -                    |
| 2.1419 | 1675 | 5.7585        | -      | -                    |
| 2.1739 | 1700 | 5.7277        | -      | -                    |
| 2.2059 | 1725 | 5.7482        | -      | -                    |
| 2.2379 | 1750 | 5.7115        | -      | -                    |
| 2.2698 | 1775 | 5.6895        | -      | -                    |
| 2.3018 | 1800 | 5.7389        | -      | -                    |
| 2.3338 | 1825 | 5.7161        | -      | -                    |
| 2.3657 | 1850 | 5.7123        | -      | -                    |
| 2.3977 | 1875 | 5.7322        | -      | -                    |
| 2.4297 | 1900 | 5.7421        | -      | -                    |
| 2.4616 | 1925 | 5.7615        | -      | -                    |
| 2.4936 | 1950 | 5.7493        | -      | -                    |
| 2.5256 | 1975 | 5.7298        | -      | -                    |
| 2.5575 | 2000 | 5.7529        | -      | -                    |
| 2.5895 | 2025 | 5.7318        | -      | -                    |
| 2.6215 | 2050 | 5.7036        | -      | -                    |
| 2.6535 | 2075 | 5.7158        | -      | -                    |
| 2.6854 | 2100 | 5.7209        | -      | -                    |
| 2.7174 | 2125 | 5.738         | -      | -                    |
| 2.7494 | 2150 | 5.7337        | -      | -                    |
| 2.7813 | 2175 | 5.713         | -      | -                    |
| 2.8133 | 2200 | 5.7257        | -      | -                    |
| 2.8453 | 2225 | 5.6958        | -      | -                    |
| 2.8772 | 2250 | 5.7053        | -      | -                    |
| 2.9092 | 2275 | 5.7246        | -      | -                    |
| 2.9412 | 2300 | 5.7291        | -      | -                    |
| 2.9731 | 2325 | 5.7139        | -      | -                    |
| 3.0    | 2346 | -             | 5.8510 | 0.0837               |
| 3.0051 | 2350 | 5.5715        | -      | -                    |
| 3.0371 | 2375 | 5.6558        | -      | -                    |
| 3.0691 | 2400 | 5.6441        | -      | -                    |
| 3.1010 | 2425 | 5.6569        | -      | -                    |
| 3.1330 | 2450 | 5.669         | -      | -                    |
| 3.1650 | 2475 | 5.6361        | -      | -                    |
| 3.1969 | 2500 | 5.6524        | -      | -                    |
| 3.2289 | 2525 | 5.6773        | -      | -                    |
| 3.2609 | 2550 | 5.6552        | -      | -                    |
| 3.2928 | 2575 | 5.6807        | -      | -                    |
| 3.3248 | 2600 | 5.6638        | -      | -                    |
| 3.3568 | 2625 | 5.6582        | -      | -                    |
| 3.3887 | 2650 | 5.658         | -      | -                    |
| 3.4207 | 2675 | 5.6626        | -      | -                    |
| 3.4527 | 2700 | 5.6802        | -      | -                    |
| 3.4847 | 2725 | 5.6377        | -      | -                    |
| 3.5166 | 2750 | 5.6752        | -      | -                    |
| 3.5486 | 2775 | 5.6573        | -      | -                    |
| 3.5806 | 2800 | 5.6963        | -      | -                    |
| 3.6125 | 2825 | 5.7007        | -      | -                    |
| 3.6445 | 2850 | 5.6746        | -      | -                    |
| 3.6765 | 2875 | 5.6312        | -      | -                    |
| 3.7084 | 2900 | 5.5596        | -      | -                    |
| 3.7404 | 2925 | 5.7003        | -      | -                    |
| 3.7724 | 2950 | 5.6739        | -      | -                    |
| 3.8043 | 2975 | 5.655         | -      | -                    |
| 3.8363 | 3000 | 5.6787        | -      | -                    |
| 3.8683 | 3025 | 5.643         | -      | -                    |
| 3.9003 | 3050 | 5.6412        | -      | -                    |
| 3.9322 | 3075 | 5.758         | -      | -                    |
| 3.9642 | 3100 | 5.6769        | -      | -                    |
| 3.9962 | 3125 | 5.7206        | -      | -                    |
| 4.0    | 3128 | -             | 5.9125 | 0.0824               |

</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->