File size: 2,355 Bytes
139ac0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
model-index:
- name: beans_image_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
config: default
split: train[:500]
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.96
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beans_image_classification
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1072
- Accuracy: 0.96
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 12
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.94 | 8 | 1.3666 | 0.66 |
| 0.3651 | 2.0 | 17 | 0.3823 | 0.84 |
| 0.5622 | 2.94 | 25 | 0.3333 | 0.86 |
| 0.3373 | 4.0 | 34 | 0.1274 | 0.97 |
| 0.2055 | 4.94 | 42 | 0.1882 | 0.93 |
| 0.1819 | 6.0 | 51 | 0.2265 | 0.9 |
| 0.1819 | 6.94 | 59 | 0.2395 | 0.91 |
| 0.2428 | 8.0 | 68 | 0.1451 | 0.97 |
| 0.1305 | 8.94 | 76 | 0.1554 | 0.94 |
| 0.1203 | 9.41 | 80 | 0.1705 | 0.92 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|