--- language: - en license: other tags: - chat license_name: tongyi-qianwen license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE pipeline_tag: text-generation model-index: - name: Smaug-Qwen2-72B-Instruct results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 78.25 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 56.27 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 35.35 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 14.88 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 15.18 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 46.56 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct name: Open LLM Leaderboard --- # Smaug-Qwen2-72B-Instruct ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/NtH_6eS-yyuEgbKeiek1_.png) # Introduction We introduce the latest in the Smaug series - a finetune of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) Compared to Qwen2-72B-Instruct, Smaug has better BBH, LiveCodeBench, and Arena-Hard scores (see evaluation results below). ## How to use The prompt format is unchanged from Qwen2-72B-Instruct. ### Use with transformers See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "abacusai/Smaug-Qwen2-72B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` # Evaluation Results ## Big-Bench Hard (BBH) Note: These results are with corrected parsing for BBH from Eleuther's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). See [this PR](https://github.com/EleutherAI/lm-evaluation-harness/pull/2013). #### Overall: | Model | Groups | Version | Filter | n-shot | Metric | Value | | Stderr | |----------------------------|--------|---------|------------|--------|-------------|--------|---|--------| | **Smaug-Qwen2-72B-Instruct** | bbh | N/A | get-answer | 3 | exact_match | 0.8241 | ± | 0.0042 | | Qwen2-72B-Instruct | bbh | N/A | get-answer | 3 | exact_match | 0.8036 | ± | 0.0044 | #### Breakdown: Smaug-Qwen2-72B-Instruct: | Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |-----------------------------------------------------------|---------|------------|--------|-------------|--------|--------| | bbh | N/A | get-answer | 3 | exact_match | 0.8241 | 0.0042 | | - bbh_cot_fewshot_boolean_expressions | 2 | get-answer | 3 | exact_match | 0.9640 | 0.0118 | | - bbh_cot_fewshot_causal_judgement | 2 | get-answer | 3 | exact_match | 0.6578 | 0.0348 | | - bbh_cot_fewshot_date_understanding | 2 | get-answer | 3 | exact_match | 0.8360 | 0.0235 | | - bbh_cot_fewshot_disambiguation_qa | 2 | get-answer | 3 | exact_match | 0.8280 | 0.0239 | | - bbh_cot_fewshot_dyck_languages | 2 | get-answer | 3 | exact_match | 0.3360 | 0.0299 | | - bbh_cot_fewshot_formal_fallacies | 2 | get-answer | 3 | exact_match | 0.7120 | 0.0287 | | - bbh_cot_fewshot_geometric_shapes | 2 | get-answer | 3 | exact_match | 0.5320 | 0.0316 | | - bbh_cot_fewshot_hyperbaton | 2 | get-answer | 3 | exact_match | 0.9880 | 0.0069 | | - bbh_cot_fewshot_logical_deduction_five_objects | 2 | get-answer | 3 | exact_match | 0.7680 | 0.0268 | | - bbh_cot_fewshot_logical_deduction_seven_objects | 2 | get-answer | 3 | exact_match | 0.5360 | 0.0316 | | - bbh_cot_fewshot_logical_deduction_three_objects | 2 | get-answer | 3 | exact_match | 0.9720 | 0.0105 | | - bbh_cot_fewshot_movie_recommendation | 2 | get-answer | 3 | exact_match | 0.8000 | 0.0253 | | - bbh_cot_fewshot_multistep_arithmetic_two | 2 | get-answer | 3 | exact_match | 0.9720 | 0.0105 | | - bbh_cot_fewshot_navigate | 2 | get-answer | 3 | exact_match | 0.9640 | 0.0118 | | - bbh_cot_fewshot_object_counting | 2 | get-answer | 3 | exact_match | 0.9200 | 0.0172 | | - bbh_cot_fewshot_penguins_in_a_table | 2 | get-answer | 3 | exact_match | 0.8493 | 0.0297 | | - bbh_cot_fewshot_reasoning_about_colored_objects | 2 | get-answer | 3 | exact_match | 0.7560 | 0.0272 | | - bbh_cot_fewshot_ruin_names | 2 | get-answer | 3 | exact_match | 0.8520 | 0.0225 | | - bbh_cot_fewshot_salient_translation_error_detection | 2 | get-answer | 3 | exact_match | 0.5920 | 0.0311 | | - bbh_cot_fewshot_snarks | 2 | get-answer | 3 | exact_match | 0.9101 | 0.0215 | | - bbh_cot_fewshot_sports_understanding | 2 | get-answer | 3 | exact_match | 0.9440 | 0.0146 | | - bbh_cot_fewshot_temporal_sequences | 2 | get-answer | 3 | exact_match | 1.0000 | 0.0000 | | - bbh_cot_fewshot_tracking_shuffled_objects_five_objects | 2 | get-answer | 3 | exact_match | 0.9800 | 0.0089 | | - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects | 2 | get-answer | 3 | exact_match | 0.9560 | 0.0130 | | - bbh_cot_fewshot_tracking_shuffled_objects_three_objects | 2 | get-answer | 3 | exact_match | 0.9640 | 0.0118 | | - bbh_cot_fewshot_web_of_lies | 2 | get-answer | 3 | exact_match | 1.0000 | 0.0000 | | - bbh_cot_fewshot_word_sorting | 2 | get-answer | 3 | exact_match | 0.6560 | 0.0301 | Qwen2-72B-Instruct: | Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |-----------------------------------------------------------|---------|------------|--------|-------------|--------|--------| | bbh | N/A | get-answer | 3 | exact_match | 0.8036 | 0.0044 | | - bbh_cot_fewshot_boolean_expressions | 2 | get-answer | 3 | exact_match | 0.9640 | 0.0118 | | - bbh_cot_fewshot_causal_judgement | 2 | get-answer | 3 | exact_match | 0.6684 | 0.0345 | | - bbh_cot_fewshot_date_understanding | 2 | get-answer | 3 | exact_match | 0.8000 | 0.0253 | | - bbh_cot_fewshot_disambiguation_qa | 2 | get-answer | 3 | exact_match | 0.8360 | 0.0235 | | - bbh_cot_fewshot_dyck_languages | 2 | get-answer | 3 | exact_match | 0.3040 | 0.0292 | | - bbh_cot_fewshot_formal_fallacies | 2 | get-answer | 3 | exact_match | 0.7480 | 0.0275 | | - bbh_cot_fewshot_geometric_shapes | 2 | get-answer | 3 | exact_match | 0.4960 | 0.0317 | | - bbh_cot_fewshot_hyperbaton | 2 | get-answer | 3 | exact_match | 0.9440 | 0.0146 | | - bbh_cot_fewshot_logical_deduction_five_objects | 2 | get-answer | 3 | exact_match | 0.6800 | 0.0296 | | - bbh_cot_fewshot_logical_deduction_seven_objects | 2 | get-answer | 3 | exact_match | 0.4720 | 0.0316 | | - bbh_cot_fewshot_logical_deduction_three_objects | 2 | get-answer | 3 | exact_match | 0.9200 | 0.0172 | | - bbh_cot_fewshot_movie_recommendation | 2 | get-answer | 3 | exact_match | 0.7800 | 0.0263 | | - bbh_cot_fewshot_multistep_arithmetic_two | 2 | get-answer | 3 | exact_match | 0.9760 | 0.0097 | | - bbh_cot_fewshot_navigate | 2 | get-answer | 3 | exact_match | 0.9520 | 0.0135 | | - bbh_cot_fewshot_object_counting | 2 | get-answer | 3 | exact_match | 0.9480 | 0.0141 | | - bbh_cot_fewshot_penguins_in_a_table | 2 | get-answer | 3 | exact_match | 0.5753 | 0.0410 | | - bbh_cot_fewshot_reasoning_about_colored_objects | 2 | get-answer | 3 | exact_match | 0.8120 | 0.0248 | | - bbh_cot_fewshot_ruin_names | 2 | get-answer | 3 | exact_match | 0.8760 | 0.0209 | | - bbh_cot_fewshot_salient_translation_error_detection | 2 | get-answer | 3 | exact_match | 0.5880 | 0.0312 | | - bbh_cot_fewshot_snarks | 2 | get-answer | 3 | exact_match | 0.8764 | 0.0247 | | - bbh_cot_fewshot_sports_understanding | 2 | get-answer | 3 | exact_match | 0.9080 | 0.0183 | | - bbh_cot_fewshot_temporal_sequences | 2 | get-answer | 3 | exact_match | 0.9960 | 0.0040 | | - bbh_cot_fewshot_tracking_shuffled_objects_five_objects | 2 | get-answer | 3 | exact_match | 0.9160 | 0.0176 | | - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects | 2 | get-answer | 3 | exact_match | 0.9400 | 0.0151 | | - bbh_cot_fewshot_tracking_shuffled_objects_three_objects | 2 | get-answer | 3 | exact_match | 0.9440 | 0.0146 | | - bbh_cot_fewshot_web_of_lies | 2 | get-answer | 3 | exact_match | 1.0000 | 0.0000 | | - bbh_cot_fewshot_word_sorting | 2 | get-answer | 3 | exact_match | 0.6680 | 0.0298 | ## LiveCodeBench | Model | Pass@1 | Easy Pass@1 | Medium Pass@1 | Hard Pass@1 | |--------------------------|--------|-------------|---------------|-------------| | **Smaug-Qwen2-72B-Instruct** | 0.3357 | 0.7286 | 0.1633 | 0.0000 | | Qwen2-72B-Instruct | 0.3139 | 0.6810 | 0.1531 | 0.0000 | ## Arena-Hard Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology. | Model | Score | 95% Confidence Interval | Average Tokens | | :---- | ---------: | ----------: | ------: | | GPT-4-Turbo-2024-04-09 | 82.6 | (-1.8, 1.6) | 662 | | GPT-4o | 78.3 | (-2.4, 2.1) | 685 | | Gemini-1.5-pro-latest | 72.1 | (-2.3, 2.2) | 630 | | Claude-3-Opus-20240229 | 60.4 | (-3.3, 2.4) | 541 | | Smaug-Llama-3-70B-Instruct | 56.7 | (-2.2, 2.6) | 661 | | GPT-4-0314 | 50.0 | (-0.0, 0.0) | 423 | | **Smaug-Qwen2-72B-Instruct** | 48.0 | (-1.8, 2.1) | 628 | | Claude-3-Sonnet-20240229 | 46.8 | (-2.1, 2.2) | 552 | | Qwen2-72B-Instruct | 43.5 | (-2.6, 2.7) | 531 | | Llama-3-70B-Instruct | 41.1 | (-2.5, 2.4) | 583 | | GPT-4-0613 | 37.9 | (-2.2, 2.0) | 354 | | Mistral-Large-2402 | 37.7 | (-1.9, 2.6) | 400 | | Mixtral-8x22B-Instruct-v0.1 | 36.4 | (-2.7, 2.9) | 430 | | Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2) | 474 | | Command-R-Plus | 33.1 | (-2.1, 2.2) | 541 | | Mistral-Medium | 31.9 | (-2.3, 2.4) | 485 | | GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0) | 401 | ## MT-Bench First turn | Model | Turn | Score | |--------------------------|------|---------| | Qwen2-72B-Instruct | 1 | 9.18125 | | Smaug-Qwen2-72B-Instruct | 1 | 9.05625 | Second turn | Model | Turn | Score | |--------------------------|------|---------| | Qwen2-72B-Instruct | 2 | 8.74684 | | Smaug-Qwen2-72B-Instruct | 2 | 8.67500 | Average | Model | Score | |--------------------------|---------| | Qwen2-72B-Instruct | 8.96541 | | Smaug-Qwen2-72B-Instruct | 8.86563 | # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abacusai__Smaug-Qwen2-72B-Instruct) | Metric |Value| |-------------------|----:| |Avg. |41.08| |IFEval (0-Shot) |78.25| |BBH (3-Shot) |56.27| |MATH Lvl 5 (4-Shot)|35.35| |GPQA (0-shot) |14.88| |MuSR (0-shot) |15.18| |MMLU-PRO (5-shot) |46.56|