--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6477 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1618 | 1.0 | 75 | 2.0497 | 0.36 | | 1.5327 | 2.0 | 150 | 1.4568 | 0.62 | | 1.1622 | 3.0 | 225 | 1.1626 | 0.66 | | 0.849 | 4.0 | 300 | 0.9894 | 0.74 | | 0.6072 | 5.0 | 375 | 0.8128 | 0.75 | | 0.4014 | 6.0 | 450 | 0.7118 | 0.79 | | 0.3285 | 7.0 | 525 | 0.7482 | 0.83 | | 0.3074 | 8.0 | 600 | 0.5633 | 0.85 | | 0.242 | 9.0 | 675 | 0.6613 | 0.82 | | 0.069 | 10.0 | 750 | 0.5173 | 0.85 | | 0.1281 | 11.0 | 825 | 0.6102 | 0.83 | | 0.0334 | 12.0 | 900 | 0.5990 | 0.84 | | 0.0307 | 13.0 | 975 | 0.6227 | 0.86 | | 0.0339 | 14.0 | 1050 | 0.6331 | 0.85 | | 0.0239 | 15.0 | 1125 | 0.6477 | 0.85 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3