import torch from torch import nn as nn from torch.nn import functional as F from r_basicsr.archs.vgg_arch import VGGFeatureExtractor from r_basicsr.utils.registry import LOSS_REGISTRY from .loss_util import weighted_loss _reduction_modes = ['none', 'mean', 'sum'] @weighted_loss def l1_loss(pred, target): return F.l1_loss(pred, target, reduction='none') @weighted_loss def mse_loss(pred, target): return F.mse_loss(pred, target, reduction='none') @weighted_loss def charbonnier_loss(pred, target, eps=1e-12): return torch.sqrt((pred - target)**2 + eps) @LOSS_REGISTRY.register() class L1Loss(nn.Module): """L1 (mean absolute error, MAE) loss. Args: loss_weight (float): Loss weight for L1 loss. Default: 1.0. reduction (str): Specifies the reduction to apply to the output. Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. """ def __init__(self, loss_weight=1.0, reduction='mean'): super(L1Loss, self).__init__() if reduction not in ['none', 'mean', 'sum']: raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') self.loss_weight = loss_weight self.reduction = reduction def forward(self, pred, target, weight=None, **kwargs): """ Args: pred (Tensor): of shape (N, C, H, W). Predicted tensor. target (Tensor): of shape (N, C, H, W). Ground truth tensor. weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. """ return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction) @LOSS_REGISTRY.register() class MSELoss(nn.Module): """MSE (L2) loss. Args: loss_weight (float): Loss weight for MSE loss. Default: 1.0. reduction (str): Specifies the reduction to apply to the output. Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. """ def __init__(self, loss_weight=1.0, reduction='mean'): super(MSELoss, self).__init__() if reduction not in ['none', 'mean', 'sum']: raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') self.loss_weight = loss_weight self.reduction = reduction def forward(self, pred, target, weight=None, **kwargs): """ Args: pred (Tensor): of shape (N, C, H, W). Predicted tensor. target (Tensor): of shape (N, C, H, W). Ground truth tensor. weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. """ return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction) @LOSS_REGISTRY.register() class CharbonnierLoss(nn.Module): """Charbonnier loss (one variant of Robust L1Loss, a differentiable variant of L1Loss). Described in "Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution". Args: loss_weight (float): Loss weight for L1 loss. Default: 1.0. reduction (str): Specifies the reduction to apply to the output. Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. eps (float): A value used to control the curvature near zero. Default: 1e-12. """ def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12): super(CharbonnierLoss, self).__init__() if reduction not in ['none', 'mean', 'sum']: raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') self.loss_weight = loss_weight self.reduction = reduction self.eps = eps def forward(self, pred, target, weight=None, **kwargs): """ Args: pred (Tensor): of shape (N, C, H, W). Predicted tensor. target (Tensor): of shape (N, C, H, W). Ground truth tensor. weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. """ return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction) @LOSS_REGISTRY.register() class WeightedTVLoss(L1Loss): """Weighted TV loss. Args: loss_weight (float): Loss weight. Default: 1.0. """ def __init__(self, loss_weight=1.0, reduction='mean'): if reduction not in ['mean', 'sum']: raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: mean | sum') super(WeightedTVLoss, self).__init__(loss_weight=loss_weight, reduction=reduction) def forward(self, pred, weight=None): if weight is None: y_weight = None x_weight = None else: y_weight = weight[:, :, :-1, :] x_weight = weight[:, :, :, :-1] y_diff = super().forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=y_weight) x_diff = super().forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=x_weight) loss = x_diff + y_diff return loss @LOSS_REGISTRY.register() class PerceptualLoss(nn.Module): """Perceptual loss with commonly used style loss. Args: layer_weights (dict): The weight for each layer of vgg feature. Here is an example: {'conv5_4': 1.}, which means the conv5_4 feature layer (before relu5_4) will be extracted with weight 1.0 in calculating losses. vgg_type (str): The type of vgg network used as feature extractor. Default: 'vgg19'. use_input_norm (bool): If True, normalize the input image in vgg. Default: True. range_norm (bool): If True, norm images with range [-1, 1] to [0, 1]. Default: False. perceptual_weight (float): If `perceptual_weight > 0`, the perceptual loss will be calculated and the loss will multiplied by the weight. Default: 1.0. style_weight (float): If `style_weight > 0`, the style loss will be calculated and the loss will multiplied by the weight. Default: 0. criterion (str): Criterion used for perceptual loss. Default: 'l1'. """ def __init__(self, layer_weights, vgg_type='vgg19', use_input_norm=True, range_norm=False, perceptual_weight=1.0, style_weight=0., criterion='l1'): super(PerceptualLoss, self).__init__() self.perceptual_weight = perceptual_weight self.style_weight = style_weight self.layer_weights = layer_weights self.vgg = VGGFeatureExtractor( layer_name_list=list(layer_weights.keys()), vgg_type=vgg_type, use_input_norm=use_input_norm, range_norm=range_norm) self.criterion_type = criterion if self.criterion_type == 'l1': self.criterion = torch.nn.L1Loss() elif self.criterion_type == 'l2': self.criterion = torch.nn.L2loss() elif self.criterion_type == 'fro': self.criterion = None else: raise NotImplementedError(f'{criterion} criterion has not been supported.') def forward(self, x, gt): """Forward function. Args: x (Tensor): Input tensor with shape (n, c, h, w). gt (Tensor): Ground-truth tensor with shape (n, c, h, w). Returns: Tensor: Forward results. """ # extract vgg features x_features = self.vgg(x) gt_features = self.vgg(gt.detach()) # calculate perceptual loss if self.perceptual_weight > 0: percep_loss = 0 for k in x_features.keys(): if self.criterion_type == 'fro': percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k] else: percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k] percep_loss *= self.perceptual_weight else: percep_loss = None # calculate style loss if self.style_weight > 0: style_loss = 0 for k in x_features.keys(): if self.criterion_type == 'fro': style_loss += torch.norm( self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k] else: style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat( gt_features[k])) * self.layer_weights[k] style_loss *= self.style_weight else: style_loss = None return percep_loss, style_loss def _gram_mat(self, x): """Calculate Gram matrix. Args: x (torch.Tensor): Tensor with shape of (n, c, h, w). Returns: torch.Tensor: Gram matrix. """ n, c, h, w = x.size() features = x.view(n, c, w * h) features_t = features.transpose(1, 2) gram = features.bmm(features_t) / (c * h * w) return gram