import torch from torch import nn as nn from torch.nn import functional as F from r_basicsr.utils.registry import ARCH_REGISTRY from .arch_util import flow_warp class BasicModule(nn.Module): """Basic module of SPyNet. Note that unlike the architecture in spynet_arch.py, the basic module here contains batch normalization. """ def __init__(self): super(BasicModule, self).__init__() self.basic_module = nn.Sequential( nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3, bias=False), nn.BatchNorm2d(16), nn.ReLU(inplace=True), nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3)) def forward(self, tensor_input): """ Args: tensor_input (Tensor): Input tensor with shape (b, 8, h, w). 8 channels contain: [reference image (3), neighbor image (3), initial flow (2)]. Returns: Tensor: Estimated flow with shape (b, 2, h, w) """ return self.basic_module(tensor_input) class SPyNetTOF(nn.Module): """SPyNet architecture for TOF. Note that this implementation is specifically for TOFlow. Please use spynet_arch.py for general use. They differ in the following aspects: 1. The basic modules here contain BatchNorm. 2. Normalization and denormalization are not done here, as they are done in TOFlow. Paper: Optical Flow Estimation using a Spatial Pyramid Network Code reference: https://github.com/Coldog2333/pytoflow Args: load_path (str): Path for pretrained SPyNet. Default: None. """ def __init__(self, load_path=None): super(SPyNetTOF, self).__init__() self.basic_module = nn.ModuleList([BasicModule() for _ in range(4)]) if load_path: self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params']) def forward(self, ref, supp): """ Args: ref (Tensor): Reference image with shape of (b, 3, h, w). supp: The supporting image to be warped: (b, 3, h, w). Returns: Tensor: Estimated optical flow: (b, 2, h, w). """ num_batches, _, h, w = ref.size() ref = [ref] supp = [supp] # generate downsampled frames for _ in range(3): ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False)) supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False)) # flow computation flow = ref[0].new_zeros(num_batches, 2, h // 16, w // 16) for i in range(4): flow_up = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0 flow = flow_up + self.basic_module[i]( torch.cat([ref[i], flow_warp(supp[i], flow_up.permute(0, 2, 3, 1)), flow_up], 1)) return flow @ARCH_REGISTRY.register() class TOFlow(nn.Module): """PyTorch implementation of TOFlow. In TOFlow, the LR frames are pre-upsampled and have the same size with the GT frames. Paper: Xue et al., Video Enhancement with Task-Oriented Flow, IJCV 2018 Code reference: 1. https://github.com/anchen1011/toflow 2. https://github.com/Coldog2333/pytoflow Args: adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation. Set to false if you want to train from scratch. Default: False """ def __init__(self, adapt_official_weights=False): super(TOFlow, self).__init__() self.adapt_official_weights = adapt_official_weights self.ref_idx = 0 if adapt_official_weights else 3 self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) # flow estimation module self.spynet = SPyNetTOF() # reconstruction module self.conv_1 = nn.Conv2d(3 * 7, 64, 9, 1, 4) self.conv_2 = nn.Conv2d(64, 64, 9, 1, 4) self.conv_3 = nn.Conv2d(64, 64, 1) self.conv_4 = nn.Conv2d(64, 3, 1) # activation function self.relu = nn.ReLU(inplace=True) def normalize(self, img): return (img - self.mean) / self.std def denormalize(self, img): return img * self.std + self.mean def forward(self, lrs): """ Args: lrs: Input lr frames: (b, 7, 3, h, w). Returns: Tensor: SR frame: (b, 3, h, w). """ # In the official implementation, the 0-th frame is the reference frame if self.adapt_official_weights: lrs = lrs[:, [3, 0, 1, 2, 4, 5, 6], :, :, :] num_batches, num_lrs, _, h, w = lrs.size() lrs = self.normalize(lrs.view(-1, 3, h, w)) lrs = lrs.view(num_batches, num_lrs, 3, h, w) lr_ref = lrs[:, self.ref_idx, :, :, :] lr_aligned = [] for i in range(7): # 7 frames if i == self.ref_idx: lr_aligned.append(lr_ref) else: lr_supp = lrs[:, i, :, :, :] flow = self.spynet(lr_ref, lr_supp) lr_aligned.append(flow_warp(lr_supp, flow.permute(0, 2, 3, 1))) # reconstruction hr = torch.stack(lr_aligned, dim=1) hr = hr.view(num_batches, -1, h, w) hr = self.relu(self.conv_1(hr)) hr = self.relu(self.conv_2(hr)) hr = self.relu(self.conv_3(hr)) hr = self.conv_4(hr) + lr_ref return self.denormalize(hr)