import os import torch from collections import OrderedDict from torch import nn as nn from torchvision.models import vgg as vgg from r_basicsr.utils.registry import ARCH_REGISTRY VGG_PRETRAIN_PATH = 'experiments/pretrained_models/vgg19-dcbb9e9d.pth' NAMES = { 'vgg11': [ 'conv1_1', 'relu1_1', 'pool1', 'conv2_1', 'relu2_1', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'pool5' ], 'vgg13': [ 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'pool5' ], 'vgg16': [ 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'pool5' ], 'vgg19': [ 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5' ] } def insert_bn(names): """Insert bn layer after each conv. Args: names (list): The list of layer names. Returns: list: The list of layer names with bn layers. """ names_bn = [] for name in names: names_bn.append(name) if 'conv' in name: position = name.replace('conv', '') names_bn.append('bn' + position) return names_bn @ARCH_REGISTRY.register() class VGGFeatureExtractor(nn.Module): """VGG network for feature extraction. In this implementation, we allow users to choose whether use normalization in the input feature and the type of vgg network. Note that the pretrained path must fit the vgg type. Args: layer_name_list (list[str]): Forward function returns the corresponding features according to the layer_name_list. Example: {'relu1_1', 'relu2_1', 'relu3_1'}. vgg_type (str): Set the type of vgg network. Default: 'vgg19'. use_input_norm (bool): If True, normalize the input image. Importantly, the input feature must in the range [0, 1]. Default: True. range_norm (bool): If True, norm images with range [-1, 1] to [0, 1]. Default: False. requires_grad (bool): If true, the parameters of VGG network will be optimized. Default: False. remove_pooling (bool): If true, the max pooling operations in VGG net will be removed. Default: False. pooling_stride (int): The stride of max pooling operation. Default: 2. """ def __init__(self, layer_name_list, vgg_type='vgg19', use_input_norm=True, range_norm=False, requires_grad=False, remove_pooling=False, pooling_stride=2): super(VGGFeatureExtractor, self).__init__() self.layer_name_list = layer_name_list self.use_input_norm = use_input_norm self.range_norm = range_norm self.names = NAMES[vgg_type.replace('_bn', '')] if 'bn' in vgg_type: self.names = insert_bn(self.names) # only borrow layers that will be used to avoid unused params max_idx = 0 for v in layer_name_list: idx = self.names.index(v) if idx > max_idx: max_idx = idx if os.path.exists(VGG_PRETRAIN_PATH): vgg_net = getattr(vgg, vgg_type)(pretrained=False) state_dict = torch.load(VGG_PRETRAIN_PATH, map_location=lambda storage, loc: storage) vgg_net.load_state_dict(state_dict) else: vgg_net = getattr(vgg, vgg_type)(pretrained=True) features = vgg_net.features[:max_idx + 1] modified_net = OrderedDict() for k, v in zip(self.names, features): if 'pool' in k: # if remove_pooling is true, pooling operation will be removed if remove_pooling: continue else: # in some cases, we may want to change the default stride modified_net[k] = nn.MaxPool2d(kernel_size=2, stride=pooling_stride) else: modified_net[k] = v self.vgg_net = nn.Sequential(modified_net) if not requires_grad: self.vgg_net.eval() for param in self.parameters(): param.requires_grad = False else: self.vgg_net.train() for param in self.parameters(): param.requires_grad = True if self.use_input_norm: # the mean is for image with range [0, 1] self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) # the std is for image with range [0, 1] self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) def forward(self, x): """Forward function. Args: x (Tensor): Input tensor with shape (n, c, h, w). Returns: Tensor: Forward results. """ if self.range_norm: x = (x + 1) / 2 if self.use_input_norm: x = (x - self.mean) / self.std output = {} for key, layer in self.vgg_net._modules.items(): x = layer(x) if key in self.layer_name_list: output[key] = x.clone() return output