from torch import nn as nn from torch.nn import functional as F from r_basicsr.utils.registry import ARCH_REGISTRY from .arch_util import ResidualBlockNoBN, default_init_weights, make_layer @ARCH_REGISTRY.register() class MSRResNet(nn.Module): """Modified SRResNet. A compacted version modified from SRResNet in "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" It uses residual blocks without BN, similar to EDSR. Currently, it supports x2, x3 and x4 upsampling scale factor. Args: num_in_ch (int): Channel number of inputs. Default: 3. num_out_ch (int): Channel number of outputs. Default: 3. num_feat (int): Channel number of intermediate features. Default: 64. num_block (int): Block number in the body network. Default: 16. upscale (int): Upsampling factor. Support x2, x3 and x4. Default: 4. """ def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=16, upscale=4): super(MSRResNet, self).__init__() self.upscale = upscale self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat) # upsampling if self.upscale in [2, 3]: self.upconv1 = nn.Conv2d(num_feat, num_feat * self.upscale * self.upscale, 3, 1, 1) self.pixel_shuffle = nn.PixelShuffle(self.upscale) elif self.upscale == 4: self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1) self.upconv2 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1) self.pixel_shuffle = nn.PixelShuffle(2) self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) # activation function self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) # initialization default_init_weights([self.conv_first, self.upconv1, self.conv_hr, self.conv_last], 0.1) if self.upscale == 4: default_init_weights(self.upconv2, 0.1) def forward(self, x): feat = self.lrelu(self.conv_first(x)) out = self.body(feat) if self.upscale == 4: out = self.lrelu(self.pixel_shuffle(self.upconv1(out))) out = self.lrelu(self.pixel_shuffle(self.upconv2(out))) elif self.upscale in [2, 3]: out = self.lrelu(self.pixel_shuffle(self.upconv1(out))) out = self.conv_last(self.lrelu(self.conv_hr(out))) base = F.interpolate(x, scale_factor=self.upscale, mode='bilinear', align_corners=False) out += base return out