import torch import torch.nn as nn from r_basicsr.utils.registry import ARCH_REGISTRY from .arch_util import ResidualBlockNoBN, make_layer class MeanShift(nn.Conv2d): """ Data normalization with mean and std. Args: rgb_range (int): Maximum value of RGB. rgb_mean (list[float]): Mean for RGB channels. rgb_std (list[float]): Std for RGB channels. sign (int): For subtraction, sign is -1, for addition, sign is 1. Default: -1. requires_grad (bool): Whether to update the self.weight and self.bias. Default: True. """ def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1, requires_grad=True): super(MeanShift, self).__init__(3, 3, kernel_size=1) std = torch.Tensor(rgb_std) self.weight.data = torch.eye(3).view(3, 3, 1, 1) self.weight.data.div_(std.view(3, 1, 1, 1)) self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) self.bias.data.div_(std) self.requires_grad = requires_grad class EResidualBlockNoBN(nn.Module): """Enhanced Residual block without BN. There are three convolution layers in residual branch. It has a style of: ---Conv-ReLU-Conv-ReLU-Conv-+-ReLU- |__________________________| """ def __init__(self, in_channels, out_channels): super(EResidualBlockNoBN, self).__init__() self.body = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 1, 1, 0), ) self.relu = nn.ReLU(inplace=True) def forward(self, x): out = self.body(x) out = self.relu(out + x) return out class MergeRun(nn.Module): """ Merge-and-run unit. This unit contains two branches with different dilated convolutions, followed by a convolution to process the concatenated features. Paper: Real Image Denoising with Feature Attention Ref git repo: https://github.com/saeed-anwar/RIDNet """ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(MergeRun, self).__init__() self.dilation1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size, stride, 2, 2), nn.ReLU(inplace=True)) self.dilation2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride, 3, 3), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size, stride, 4, 4), nn.ReLU(inplace=True)) self.aggregation = nn.Sequential( nn.Conv2d(out_channels * 2, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True)) def forward(self, x): dilation1 = self.dilation1(x) dilation2 = self.dilation2(x) out = torch.cat([dilation1, dilation2], dim=1) out = self.aggregation(out) out = out + x return out class ChannelAttention(nn.Module): """Channel attention. Args: num_feat (int): Channel number of intermediate features. squeeze_factor (int): Channel squeeze factor. Default: """ def __init__(self, mid_channels, squeeze_factor=16): super(ChannelAttention, self).__init__() self.attention = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(mid_channels, mid_channels // squeeze_factor, 1, padding=0), nn.ReLU(inplace=True), nn.Conv2d(mid_channels // squeeze_factor, mid_channels, 1, padding=0), nn.Sigmoid()) def forward(self, x): y = self.attention(x) return x * y class EAM(nn.Module): """Enhancement attention modules (EAM) in RIDNet. This module contains a merge-and-run unit, a residual block, an enhanced residual block and a feature attention unit. Attributes: merge: The merge-and-run unit. block1: The residual block. block2: The enhanced residual block. ca: The feature/channel attention unit. """ def __init__(self, in_channels, mid_channels, out_channels): super(EAM, self).__init__() self.merge = MergeRun(in_channels, mid_channels) self.block1 = ResidualBlockNoBN(mid_channels) self.block2 = EResidualBlockNoBN(mid_channels, out_channels) self.ca = ChannelAttention(out_channels) # The residual block in the paper contains a relu after addition. self.relu = nn.ReLU(inplace=True) def forward(self, x): out = self.merge(x) out = self.relu(self.block1(out)) out = self.block2(out) out = self.ca(out) return out @ARCH_REGISTRY.register() class RIDNet(nn.Module): """RIDNet: Real Image Denoising with Feature Attention. Ref git repo: https://github.com/saeed-anwar/RIDNet Args: in_channels (int): Channel number of inputs. mid_channels (int): Channel number of EAM modules. Default: 64. out_channels (int): Channel number of outputs. num_block (int): Number of EAM. Default: 4. img_range (float): Image range. Default: 255. rgb_mean (tuple[float]): Image mean in RGB orders. Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset. """ def __init__(self, in_channels, mid_channels, out_channels, num_block=4, img_range=255., rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1.0, 1.0, 1.0)): super(RIDNet, self).__init__() self.sub_mean = MeanShift(img_range, rgb_mean, rgb_std) self.add_mean = MeanShift(img_range, rgb_mean, rgb_std, 1) self.head = nn.Conv2d(in_channels, mid_channels, 3, 1, 1) self.body = make_layer( EAM, num_block, in_channels=mid_channels, mid_channels=mid_channels, out_channels=mid_channels) self.tail = nn.Conv2d(mid_channels, out_channels, 3, 1, 1) self.relu = nn.ReLU(inplace=True) def forward(self, x): res = self.sub_mean(x) res = self.tail(self.body(self.relu(self.head(res)))) res = self.add_mean(res) out = x + res return out