""" Modified from https://github.com/mlomnitz/DiffJPEG For images not divisible by 8 https://dsp.stackexchange.com/questions/35339/jpeg-dct-padding/35343#35343 """ import itertools import numpy as np import torch import torch.nn as nn from torch.nn import functional as F # ------------------------ utils ------------------------# y_table = np.array( [[16, 11, 10, 16, 24, 40, 51, 61], [12, 12, 14, 19, 26, 58, 60, 55], [14, 13, 16, 24, 40, 57, 69, 56], [14, 17, 22, 29, 51, 87, 80, 62], [18, 22, 37, 56, 68, 109, 103, 77], [24, 35, 55, 64, 81, 104, 113, 92], [49, 64, 78, 87, 103, 121, 120, 101], [72, 92, 95, 98, 112, 100, 103, 99]], dtype=np.float32).T y_table = nn.Parameter(torch.from_numpy(y_table)) c_table = np.empty((8, 8), dtype=np.float32) c_table.fill(99) c_table[:4, :4] = np.array([[17, 18, 24, 47], [18, 21, 26, 66], [24, 26, 56, 99], [47, 66, 99, 99]]).T c_table = nn.Parameter(torch.from_numpy(c_table)) def diff_round(x): """ Differentiable rounding function """ return torch.round(x) + (x - torch.round(x))**3 def quality_to_factor(quality): """ Calculate factor corresponding to quality Args: quality(float): Quality for jpeg compression. Returns: float: Compression factor. """ if quality < 50: quality = 5000. / quality else: quality = 200. - quality * 2 return quality / 100. # ------------------------ compression ------------------------# class RGB2YCbCrJpeg(nn.Module): """ Converts RGB image to YCbCr """ def __init__(self): super(RGB2YCbCrJpeg, self).__init__() matrix = np.array([[0.299, 0.587, 0.114], [-0.168736, -0.331264, 0.5], [0.5, -0.418688, -0.081312]], dtype=np.float32).T self.shift = nn.Parameter(torch.tensor([0., 128., 128.])) self.matrix = nn.Parameter(torch.from_numpy(matrix)) def forward(self, image): """ Args: image(Tensor): batch x 3 x height x width Returns: Tensor: batch x height x width x 3 """ image = image.permute(0, 2, 3, 1) result = torch.tensordot(image, self.matrix, dims=1) + self.shift return result.view(image.shape) class ChromaSubsampling(nn.Module): """ Chroma subsampling on CbCr channels """ def __init__(self): super(ChromaSubsampling, self).__init__() def forward(self, image): """ Args: image(tensor): batch x height x width x 3 Returns: y(tensor): batch x height x width cb(tensor): batch x height/2 x width/2 cr(tensor): batch x height/2 x width/2 """ image_2 = image.permute(0, 3, 1, 2).clone() cb = F.avg_pool2d(image_2[:, 1, :, :].unsqueeze(1), kernel_size=2, stride=(2, 2), count_include_pad=False) cr = F.avg_pool2d(image_2[:, 2, :, :].unsqueeze(1), kernel_size=2, stride=(2, 2), count_include_pad=False) cb = cb.permute(0, 2, 3, 1) cr = cr.permute(0, 2, 3, 1) return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3) class BlockSplitting(nn.Module): """ Splitting image into patches """ def __init__(self): super(BlockSplitting, self).__init__() self.k = 8 def forward(self, image): """ Args: image(tensor): batch x height x width Returns: Tensor: batch x h*w/64 x h x w """ height, _ = image.shape[1:3] batch_size = image.shape[0] image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k) image_transposed = image_reshaped.permute(0, 1, 3, 2, 4) return image_transposed.contiguous().view(batch_size, -1, self.k, self.k) class DCT8x8(nn.Module): """ Discrete Cosine Transformation """ def __init__(self): super(DCT8x8, self).__init__() tensor = np.zeros((8, 8, 8, 8), dtype=np.float32) for x, y, u, v in itertools.product(range(8), repeat=4): tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos((2 * y + 1) * v * np.pi / 16) alpha = np.array([1. / np.sqrt(2)] + [1] * 7) self.tensor = nn.Parameter(torch.from_numpy(tensor).float()) self.scale = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha) * 0.25).float()) def forward(self, image): """ Args: image(tensor): batch x height x width Returns: Tensor: batch x height x width """ image = image - 128 result = self.scale * torch.tensordot(image, self.tensor, dims=2) result.view(image.shape) return result class YQuantize(nn.Module): """ JPEG Quantization for Y channel Args: rounding(function): rounding function to use """ def __init__(self, rounding): super(YQuantize, self).__init__() self.rounding = rounding self.y_table = y_table def forward(self, image, factor=1): """ Args: image(tensor): batch x height x width Returns: Tensor: batch x height x width """ if isinstance(factor, (int, float)): image = image.float() / (self.y_table * factor) else: b = factor.size(0) table = self.y_table.expand(b, 1, 8, 8) * factor.view(b, 1, 1, 1) image = image.float() / table image = self.rounding(image) return image class CQuantize(nn.Module): """ JPEG Quantization for CbCr channels Args: rounding(function): rounding function to use """ def __init__(self, rounding): super(CQuantize, self).__init__() self.rounding = rounding self.c_table = c_table def forward(self, image, factor=1): """ Args: image(tensor): batch x height x width Returns: Tensor: batch x height x width """ if isinstance(factor, (int, float)): image = image.float() / (self.c_table * factor) else: b = factor.size(0) table = self.c_table.expand(b, 1, 8, 8) * factor.view(b, 1, 1, 1) image = image.float() / table image = self.rounding(image) return image class CompressJpeg(nn.Module): """Full JPEG compression algorithm Args: rounding(function): rounding function to use """ def __init__(self, rounding=torch.round): super(CompressJpeg, self).__init__() self.l1 = nn.Sequential(RGB2YCbCrJpeg(), ChromaSubsampling()) self.l2 = nn.Sequential(BlockSplitting(), DCT8x8()) self.c_quantize = CQuantize(rounding=rounding) self.y_quantize = YQuantize(rounding=rounding) def forward(self, image, factor=1): """ Args: image(tensor): batch x 3 x height x width Returns: dict(tensor): Compressed tensor with batch x h*w/64 x 8 x 8. """ y, cb, cr = self.l1(image * 255) components = {'y': y, 'cb': cb, 'cr': cr} for k in components.keys(): comp = self.l2(components[k]) if k in ('cb', 'cr'): comp = self.c_quantize(comp, factor=factor) else: comp = self.y_quantize(comp, factor=factor) components[k] = comp return components['y'], components['cb'], components['cr'] # ------------------------ decompression ------------------------# class YDequantize(nn.Module): """Dequantize Y channel """ def __init__(self): super(YDequantize, self).__init__() self.y_table = y_table def forward(self, image, factor=1): """ Args: image(tensor): batch x height x width Returns: Tensor: batch x height x width """ if isinstance(factor, (int, float)): out = image * (self.y_table * factor) else: b = factor.size(0) table = self.y_table.expand(b, 1, 8, 8) * factor.view(b, 1, 1, 1) out = image * table return out class CDequantize(nn.Module): """Dequantize CbCr channel """ def __init__(self): super(CDequantize, self).__init__() self.c_table = c_table def forward(self, image, factor=1): """ Args: image(tensor): batch x height x width Returns: Tensor: batch x height x width """ if isinstance(factor, (int, float)): out = image * (self.c_table * factor) else: b = factor.size(0) table = self.c_table.expand(b, 1, 8, 8) * factor.view(b, 1, 1, 1) out = image * table return out class iDCT8x8(nn.Module): """Inverse discrete Cosine Transformation """ def __init__(self): super(iDCT8x8, self).__init__() alpha = np.array([1. / np.sqrt(2)] + [1] * 7) self.alpha = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha)).float()) tensor = np.zeros((8, 8, 8, 8), dtype=np.float32) for x, y, u, v in itertools.product(range(8), repeat=4): tensor[x, y, u, v] = np.cos((2 * u + 1) * x * np.pi / 16) * np.cos((2 * v + 1) * y * np.pi / 16) self.tensor = nn.Parameter(torch.from_numpy(tensor).float()) def forward(self, image): """ Args: image(tensor): batch x height x width Returns: Tensor: batch x height x width """ image = image * self.alpha result = 0.25 * torch.tensordot(image, self.tensor, dims=2) + 128 result.view(image.shape) return result class BlockMerging(nn.Module): """Merge patches into image """ def __init__(self): super(BlockMerging, self).__init__() def forward(self, patches, height, width): """ Args: patches(tensor) batch x height*width/64, height x width height(int) width(int) Returns: Tensor: batch x height x width """ k = 8 batch_size = patches.shape[0] image_reshaped = patches.view(batch_size, height // k, width // k, k, k) image_transposed = image_reshaped.permute(0, 1, 3, 2, 4) return image_transposed.contiguous().view(batch_size, height, width) class ChromaUpsampling(nn.Module): """Upsample chroma layers """ def __init__(self): super(ChromaUpsampling, self).__init__() def forward(self, y, cb, cr): """ Args: y(tensor): y channel image cb(tensor): cb channel cr(tensor): cr channel Returns: Tensor: batch x height x width x 3 """ def repeat(x, k=2): height, width = x.shape[1:3] x = x.unsqueeze(-1) x = x.repeat(1, 1, k, k) x = x.view(-1, height * k, width * k) return x cb = repeat(cb) cr = repeat(cr) return torch.cat([y.unsqueeze(3), cb.unsqueeze(3), cr.unsqueeze(3)], dim=3) class YCbCr2RGBJpeg(nn.Module): """Converts YCbCr image to RGB JPEG """ def __init__(self): super(YCbCr2RGBJpeg, self).__init__() matrix = np.array([[1., 0., 1.402], [1, -0.344136, -0.714136], [1, 1.772, 0]], dtype=np.float32).T self.shift = nn.Parameter(torch.tensor([0, -128., -128.])) self.matrix = nn.Parameter(torch.from_numpy(matrix)) def forward(self, image): """ Args: image(tensor): batch x height x width x 3 Returns: Tensor: batch x 3 x height x width """ result = torch.tensordot(image + self.shift, self.matrix, dims=1) return result.view(image.shape).permute(0, 3, 1, 2) class DeCompressJpeg(nn.Module): """Full JPEG decompression algorithm Args: rounding(function): rounding function to use """ def __init__(self, rounding=torch.round): super(DeCompressJpeg, self).__init__() self.c_dequantize = CDequantize() self.y_dequantize = YDequantize() self.idct = iDCT8x8() self.merging = BlockMerging() self.chroma = ChromaUpsampling() self.colors = YCbCr2RGBJpeg() def forward(self, y, cb, cr, imgh, imgw, factor=1): """ Args: compressed(dict(tensor)): batch x h*w/64 x 8 x 8 imgh(int) imgw(int) factor(float) Returns: Tensor: batch x 3 x height x width """ components = {'y': y, 'cb': cb, 'cr': cr} for k in components.keys(): if k in ('cb', 'cr'): comp = self.c_dequantize(components[k], factor=factor) height, width = int(imgh / 2), int(imgw / 2) else: comp = self.y_dequantize(components[k], factor=factor) height, width = imgh, imgw comp = self.idct(comp) components[k] = self.merging(comp, height, width) # image = self.chroma(components['y'], components['cb'], components['cr']) image = self.colors(image) image = torch.min(255 * torch.ones_like(image), torch.max(torch.zeros_like(image), image)) return image / 255 # ------------------------ main DiffJPEG ------------------------ # class DiffJPEG(nn.Module): """This JPEG algorithm result is slightly different from cv2. DiffJPEG supports batch processing. Args: differentiable(bool): If True, uses custom differentiable rounding function, if False, uses standard torch.round """ def __init__(self, differentiable=True): super(DiffJPEG, self).__init__() if differentiable: rounding = diff_round else: rounding = torch.round self.compress = CompressJpeg(rounding=rounding) self.decompress = DeCompressJpeg(rounding=rounding) def forward(self, x, quality): """ Args: x (Tensor): Input image, bchw, rgb, [0, 1] quality(float): Quality factor for jpeg compression scheme. """ factor = quality if isinstance(factor, (int, float)): factor = quality_to_factor(factor) else: for i in range(factor.size(0)): factor[i] = quality_to_factor(factor[i]) h, w = x.size()[-2:] h_pad, w_pad = 0, 0 # why should use 16 if h % 16 != 0: h_pad = 16 - h % 16 if w % 16 != 0: w_pad = 16 - w % 16 x = F.pad(x, (0, w_pad, 0, h_pad), mode='constant', value=0) y, cb, cr = self.compress(x, factor=factor) recovered = self.decompress(y, cb, cr, (h + h_pad), (w + w_pad), factor=factor) recovered = recovered[:, :, 0:h, 0:w] return recovered if __name__ == '__main__': import cv2 from r_basicsr.utils import img2tensor, tensor2img img_gt = cv2.imread('test.png') / 255. # -------------- cv2 -------------- # encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 20] _, encimg = cv2.imencode('.jpg', img_gt * 255., encode_param) img_lq = np.float32(cv2.imdecode(encimg, 1)) cv2.imwrite('cv2_JPEG_20.png', img_lq) # -------------- DiffJPEG -------------- # jpeger = DiffJPEG(differentiable=False).cuda() img_gt = img2tensor(img_gt) img_gt = torch.stack([img_gt, img_gt]).cuda() quality = img_gt.new_tensor([20, 40]) out = jpeger(img_gt, quality=quality) cv2.imwrite('pt_JPEG_20.png', tensor2img(out[0])) cv2.imwrite('pt_JPEG_40.png', tensor2img(out[1]))