import torch from torch import nn as nn from r_basicsr.archs.arch_util import ResidualBlockNoBN, Upsample, make_layer from r_basicsr.utils.registry import ARCH_REGISTRY @ARCH_REGISTRY.register() class EDSR(nn.Module): """EDSR network structure. Paper: Enhanced Deep Residual Networks for Single Image Super-Resolution. Ref git repo: https://github.com/thstkdgus35/EDSR-PyTorch Args: num_in_ch (int): Channel number of inputs. num_out_ch (int): Channel number of outputs. num_feat (int): Channel number of intermediate features. Default: 64. num_block (int): Block number in the trunk network. Default: 16. upscale (int): Upsampling factor. Support 2^n and 3. Default: 4. res_scale (float): Used to scale the residual in residual block. Default: 1. img_range (float): Image range. Default: 255. rgb_mean (tuple[float]): Image mean in RGB orders. Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset. """ def __init__(self, num_in_ch, num_out_ch, num_feat=64, num_block=16, upscale=4, res_scale=1, img_range=255., rgb_mean=(0.4488, 0.4371, 0.4040)): super(EDSR, self).__init__() self.img_range = img_range self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat, res_scale=res_scale, pytorch_init=True) self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) def forward(self, x): self.mean = self.mean.type_as(x) x = (x - self.mean) * self.img_range x = self.conv_first(x) res = self.conv_after_body(self.body(x)) res += x x = self.conv_last(self.upsample(res)) x = x / self.img_range + self.mean return x