import math import torch from torch import nn as nn from torch.nn import functional as F from r_basicsr.utils.registry import ARCH_REGISTRY from .arch_util import flow_warp class BasicModule(nn.Module): """Basic Module for SpyNet. """ def __init__(self): super(BasicModule, self).__init__() self.basic_module = nn.Sequential( nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False), nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3)) def forward(self, tensor_input): return self.basic_module(tensor_input) @ARCH_REGISTRY.register() class SpyNet(nn.Module): """SpyNet architecture. Args: load_path (str): path for pretrained SpyNet. Default: None. """ def __init__(self, load_path=None): super(SpyNet, self).__init__() self.basic_module = nn.ModuleList([BasicModule() for _ in range(6)]) if load_path: self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params']) self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) def preprocess(self, tensor_input): tensor_output = (tensor_input - self.mean) / self.std return tensor_output def process(self, ref, supp): flow = [] ref = [self.preprocess(ref)] supp = [self.preprocess(supp)] for level in range(5): ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False)) supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False)) flow = ref[0].new_zeros( [ref[0].size(0), 2, int(math.floor(ref[0].size(2) / 2.0)), int(math.floor(ref[0].size(3) / 2.0))]) for level in range(len(ref)): upsampled_flow = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0 if upsampled_flow.size(2) != ref[level].size(2): upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 0, 0, 1], mode='replicate') if upsampled_flow.size(3) != ref[level].size(3): upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 1, 0, 0], mode='replicate') flow = self.basic_module[level](torch.cat([ ref[level], flow_warp( supp[level], upsampled_flow.permute(0, 2, 3, 1), interp_mode='bilinear', padding_mode='border'), upsampled_flow ], 1)) + upsampled_flow return flow def forward(self, ref, supp): assert ref.size() == supp.size() h, w = ref.size(2), ref.size(3) w_floor = math.floor(math.ceil(w / 32.0) * 32.0) h_floor = math.floor(math.ceil(h / 32.0) * 32.0) ref = F.interpolate(input=ref, size=(h_floor, w_floor), mode='bilinear', align_corners=False) supp = F.interpolate(input=supp, size=(h_floor, w_floor), mode='bilinear', align_corners=False) flow = F.interpolate(input=self.process(ref, supp), size=(h, w), mode='bilinear', align_corners=False) flow[:, 0, :, :] *= float(w) / float(w_floor) flow[:, 1, :, :] *= float(h) / float(h_floor) return flow