|
import os |
|
from PIL import Image |
|
import numpy as np |
|
import torch |
|
import cv2 |
|
import logging |
|
import hashlib |
|
from insightface.app.common import Face |
|
from safetensors.torch import save_file, safe_open |
|
from tqdm import tqdm |
|
import urllib.request |
|
|
|
|
|
def tensor_to_pil(img_tensor, batch_index=0): |
|
|
|
img_tensor = img_tensor[batch_index].unsqueeze(0) |
|
i = 255. * img_tensor.cpu().numpy() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8).squeeze()) |
|
return img |
|
|
|
|
|
def batch_tensor_to_pil(img_tensor): |
|
|
|
return [tensor_to_pil(img_tensor, i) for i in range(img_tensor.shape[0])] |
|
|
|
|
|
def pil_to_tensor(image): |
|
|
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = torch.from_numpy(image).unsqueeze(0) |
|
if len(image.shape) == 3: |
|
image = image.unsqueeze(-1) |
|
return image |
|
|
|
|
|
def batched_pil_to_tensor(images): |
|
|
|
return torch.cat([pil_to_tensor(image) for image in images], dim=0) |
|
|
|
|
|
def img2tensor(imgs, bgr2rgb=True, float32=True): |
|
|
|
def _totensor(img, bgr2rgb, float32): |
|
if img.shape[2] == 3 and bgr2rgb: |
|
if img.dtype == 'float64': |
|
img = img.astype('float32') |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
img = torch.from_numpy(img.transpose(2, 0, 1)) |
|
if float32: |
|
img = img.float() |
|
return img |
|
|
|
if isinstance(imgs, list): |
|
return [_totensor(img, bgr2rgb, float32) for img in imgs] |
|
else: |
|
return _totensor(imgs, bgr2rgb, float32) |
|
|
|
|
|
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): |
|
|
|
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): |
|
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') |
|
|
|
if torch.is_tensor(tensor): |
|
tensor = [tensor] |
|
result = [] |
|
for _tensor in tensor: |
|
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) |
|
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) |
|
|
|
n_dim = _tensor.dim() |
|
if n_dim == 4: |
|
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() |
|
img_np = img_np.transpose(1, 2, 0) |
|
if rgb2bgr: |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) |
|
elif n_dim == 3: |
|
img_np = _tensor.numpy() |
|
img_np = img_np.transpose(1, 2, 0) |
|
if img_np.shape[2] == 1: |
|
img_np = np.squeeze(img_np, axis=2) |
|
else: |
|
if rgb2bgr: |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) |
|
elif n_dim == 2: |
|
img_np = _tensor.numpy() |
|
else: |
|
raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}') |
|
if out_type == np.uint8: |
|
|
|
img_np = (img_np * 255.0).round() |
|
img_np = img_np.astype(out_type) |
|
result.append(img_np) |
|
if len(result) == 1: |
|
result = result[0] |
|
return result |
|
|
|
def download(url, path, name): |
|
request = urllib.request.urlopen(url) |
|
total = int(request.headers.get('Content-Length', 0)) |
|
with tqdm(total=total, desc=f'[ReActor] Downloading {name} to {path}', unit='B', unit_scale=True, unit_divisor=1024) as progress: |
|
urllib.request.urlretrieve(url, path, reporthook=lambda count, block_size, total_size: progress.update(block_size)) |
|
|
|
def move_path(old_path, new_path): |
|
if os.path.exists(old_path): |
|
try: |
|
models = os.listdir(old_path) |
|
for model in models: |
|
move_old_path = os.path.join(old_path, model) |
|
move_new_path = os.path.join(new_path, model) |
|
os.rename(move_old_path, move_new_path) |
|
os.rmdir(old_path) |
|
except Exception as e: |
|
print(f"Error: {e}") |
|
new_path = old_path |
|
|
|
def addLoggingLevel(levelName, levelNum, methodName=None): |
|
if not methodName: |
|
methodName = levelName.lower() |
|
|
|
def logForLevel(self, message, *args, **kwargs): |
|
if self.isEnabledFor(levelNum): |
|
self._log(levelNum, message, args, **kwargs) |
|
|
|
def logToRoot(message, *args, **kwargs): |
|
logging.log(levelNum, message, *args, **kwargs) |
|
|
|
logging.addLevelName(levelNum, levelName) |
|
setattr(logging, levelName, levelNum) |
|
setattr(logging.getLoggerClass(), methodName, logForLevel) |
|
setattr(logging, methodName, logToRoot) |
|
|
|
def get_image_md5hash(image: Image.Image): |
|
md5hash = hashlib.md5(image.tobytes()) |
|
return md5hash.hexdigest() |
|
|
|
def save_face_model(face: Face, filename: str) -> None: |
|
try: |
|
tensors = { |
|
"bbox": torch.tensor(face["bbox"]), |
|
"kps": torch.tensor(face["kps"]), |
|
"det_score": torch.tensor(face["det_score"]), |
|
"landmark_3d_68": torch.tensor(face["landmark_3d_68"]), |
|
"pose": torch.tensor(face["pose"]), |
|
"landmark_2d_106": torch.tensor(face["landmark_2d_106"]), |
|
"embedding": torch.tensor(face["embedding"]), |
|
"gender": torch.tensor(face["gender"]), |
|
"age": torch.tensor(face["age"]), |
|
} |
|
save_file(tensors, filename) |
|
print(f"Face model has been saved to '{filename}'") |
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|
|
def load_face_model(filename: str): |
|
face = {} |
|
with safe_open(filename, framework="pt") as f: |
|
for k in f.keys(): |
|
face[k] = f.get_tensor(k).numpy() |
|
return Face(face) |
|
|