File size: 16,638 Bytes
e6043d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import os, glob, sys

import torch
from torchvision.transforms.functional import normalize
import numpy as np
import cv2

from modules.processing import StableDiffusionProcessingImg2Img
from comfy_extras.chainner_models import model_loading
import comfy.model_management as model_management
import comfy.utils
import folder_paths

import scripts.reactor_version
from scripts.reactor_faceswap import (
    FaceSwapScript,
    get_models,
    get_current_faces_model,
    analyze_faces,
    half_det_size
)
from scripts.reactor_logger import logger
from reactor_utils import (
    batch_tensor_to_pil,
    batched_pil_to_tensor,
    tensor_to_pil,
    img2tensor,
    tensor2img,
    save_face_model,
    load_face_model,
    download
)
from reactor_log_patch import apply_logging_patch
from r_facelib.utils.face_restoration_helper import FaceRestoreHelper
from r_basicsr.utils.registry import ARCH_REGISTRY
import scripts.r_archs.codeformer_arch


models_dir = folder_paths.models_dir
REACTOR_MODELS_PATH = os.path.join(models_dir, "reactor")
FACE_MODELS_PATH = os.path.join(REACTOR_MODELS_PATH, "faces")

if not os.path.exists(REACTOR_MODELS_PATH):
    os.makedirs(REACTOR_MODELS_PATH)
    if not os.path.exists(FACE_MODELS_PATH):
        os.makedirs(FACE_MODELS_PATH)

dir_facerestore_models = os.path.join(models_dir, "facerestore_models")
os.makedirs(dir_facerestore_models, exist_ok=True)
folder_paths.folder_names_and_paths["facerestore_models"] = ([dir_facerestore_models], folder_paths.supported_pt_extensions)


def get_facemodels():
    models_path = os.path.join(FACE_MODELS_PATH, "*")
    models = glob.glob(models_path)
    models = [x for x in models if x.endswith(".safetensors")]
    return models

def get_restorers():
    models_path = os.path.join(models_dir, "facerestore_models/*")
    models = glob.glob(models_path)
    models = [x for x in models if x.endswith(".pth")]
    if len(models) == 0:
        fr_urls = [
            "https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GFPGANv1.3.pth",
            "https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GFPGANv1.4.pth",
            "https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/codeformer-v0.1.0.pth"
        ]
        for model_url in fr_urls:
            model_name = os.path.basename(model_url)
            model_path = os.path.join(dir_facerestore_models, model_name)
            download(model_url, model_path, model_name)
        models = glob.glob(models_path)
        models = [x for x in models if x.endswith(".pth")]
    return models

def get_model_names(get_models):
    models = get_models()
    names = ["none"]
    for x in models:
        names.append(os.path.basename(x))
    return names

def model_names():
    models = get_models()
    return {os.path.basename(x): x for x in models}


class reactor:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "enabled": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}),
                "input_image": ("IMAGE",),               
                "swap_model": (list(model_names().keys()),),
                "facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],),
                "face_restore_model": (get_model_names(get_restorers),),
                "face_restore_visibility": ("FLOAT", {"default": 1, "min": 0.1, "max": 1, "step": 0.05}),
                "codeformer_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05}),
                "detect_gender_input": (["no","female","male"], {"default": "no"}),
                "detect_gender_source": (["no","female","male"], {"default": "no"}),
                "input_faces_index": ("STRING", {"default": "0"}),
                "source_faces_index": ("STRING", {"default": "0"}),
                "console_log_level": ([0, 1, 2], {"default": 1}),
            },
            "optional": {
                "source_image": ("IMAGE",),
                "face_model": ("FACE_MODEL",),
            }
        }

    RETURN_TYPES = ("IMAGE","FACE_MODEL")
    FUNCTION = "execute"
    CATEGORY = "ReActor"

    def __init__(self):
        self.face_helper = None

    def restore_face(
            self,
            input_image,
            face_restore_model,
            face_restore_visibility,
            codeformer_weight,
            facedetection
        ):

        result = input_image

        if face_restore_model != "none" and not model_management.processing_interrupted():

            logger.status(f"Restoring with {face_restore_model}")

            model_path = folder_paths.get_full_path("facerestore_models", face_restore_model)

            device = model_management.get_torch_device()
            
            if "codeformer" in face_restore_model.lower():
                
                codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
                    dim_embd=512,
                    codebook_size=1024,
                    n_head=8,
                    n_layers=9,
                    connect_list=["32", "64", "128", "256"],
                ).to(device)
                checkpoint = torch.load(model_path)["params_ema"]
                codeformer_net.load_state_dict(checkpoint)
                facerestore_model = codeformer_net.eval()
            
            else:

                sd = comfy.utils.load_torch_file(model_path, safe_load=True)
                facerestore_model = model_loading.load_state_dict(sd).eval()

            facerestore_model.to(device)
            
            if self.face_helper is None:
                self.face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model=facedetection, save_ext='png', use_parse=True, device=device)

            image_np = 255. * result.cpu().numpy()

            total_images = image_np.shape[0]
            out_images = np.ndarray(shape=image_np.shape)

            for i in range(total_images):
                cur_image_np = image_np[i,:, :, ::-1]

                original_resolution = cur_image_np.shape[0:2]

                if facerestore_model is None or self.face_helper is None:
                    return result

                self.face_helper.clean_all()
                self.face_helper.read_image(cur_image_np)
                self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
                self.face_helper.align_warp_face()

                restored_face = None
                for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
                    cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
                    normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
                    cropped_face_t = cropped_face_t.unsqueeze(0).to(device)

                    try:
                        with torch.no_grad():
                            output = facerestore_model(cropped_face_t, w=codeformer_weight)[0] if "codeformer" in face_restore_model.lower() else facerestore_model(cropped_face_t)[0]
                            restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
                        del output
                        torch.cuda.empty_cache()
                    except Exception as error:
                        print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr)
                        restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
                    
                    if face_restore_visibility < 1:
                        restored_face = cropped_face * (1 - face_restore_visibility) + restored_face * face_restore_visibility
                    
                    restored_face = restored_face.astype('uint8')
                    self.face_helper.add_restored_face(restored_face)

                self.face_helper.get_inverse_affine(None)

                restored_img = self.face_helper.paste_faces_to_input_image()
                restored_img = restored_img[:, :, ::-1]

                if original_resolution != restored_img.shape[0:2]:
                    restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)

                self.face_helper.clean_all()

                out_images[i] = restored_img

            restored_img_np = np.array(out_images).astype(np.float32) / 255.0
            restored_img_tensor = torch.from_numpy(restored_img_np)

            result = restored_img_tensor

        return result
    
    def execute(self, enabled, input_image, swap_model, detect_gender_source, detect_gender_input, source_faces_index, input_faces_index, console_log_level, face_restore_model, face_restore_visibility, codeformer_weight, facedetection, source_image=None, face_model=None):
        apply_logging_patch(console_log_level)

        if not enabled:
            return (input_image,face_model)
        elif source_image is None and face_model is None:
            logger.error("Please provide 'source_image' or `face_model`")
            return (input_image,face_model)

        if face_model == "none":
            face_model = None
        
        script = FaceSwapScript()
        pil_images = batch_tensor_to_pil(input_image)
        if source_image is not None:
            source = tensor_to_pil(source_image)
        else:
            source = None
        p = StableDiffusionProcessingImg2Img(pil_images)
        script.process(
            p=p,
            img=source,
            enable=True,
            source_faces_index=source_faces_index,
            faces_index=input_faces_index,
            model=swap_model,
            swap_in_source=True,
            swap_in_generated=True,
            gender_source=detect_gender_source,
            gender_target=detect_gender_input,
            face_model=face_model,
        )
        result = batched_pil_to_tensor(p.init_images)

        if face_model is None:
            current_face_model = get_current_faces_model()
            face_model_to_provide = current_face_model[0] if (current_face_model is not None and len(current_face_model) > 0) else face_model
        else:
            face_model_to_provide = face_model
        
        result = reactor.restore_face(self,result,face_restore_model,face_restore_visibility,codeformer_weight,facedetection)

        return (result,face_model_to_provide)


class LoadFaceModel:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "face_model": (get_model_names(get_facemodels),),
            }
        }
    
    RETURN_TYPES = ("FACE_MODEL",)
    FUNCTION = "load_model"
    CATEGORY = "ReActor"

    def load_model(self, face_model):
        self.face_model = face_model
        self.face_models_path = FACE_MODELS_PATH
        if self.face_model != "none":
            face_model_path = os.path.join(self.face_models_path, self.face_model)
            out = load_face_model(face_model_path)
        else:
            out = None
        return (out, )


class SaveFaceModel:
    def __init__(self):
        self.output_dir = FACE_MODELS_PATH

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "save_mode": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}),
                "face_model_name": ("STRING", {"default": "default"}),
                "select_face_index": ("INT", {"default": 0, "min": 0}),
            },
            "optional": {
                "image": ("IMAGE",),
                "face_model": ("FACE_MODEL",),
            }
        }

    RETURN_TYPES = ()
    FUNCTION = "save_model"

    OUTPUT_NODE = True

    CATEGORY = "ReActor"

    def save_model(self, save_mode, face_model_name, select_face_index, image=None, face_model=None, det_size=(640, 640)):
        if save_mode and image is not None:
            source = tensor_to_pil(image)
            source = cv2.cvtColor(np.array(source), cv2.COLOR_RGB2BGR)
            apply_logging_patch(1)
            logger.status("Building Face Model...")
            face_model_raw = analyze_faces(source, det_size)
            if len(face_model_raw) == 0:
                det_size_half = half_det_size(det_size)
                face_model_raw = analyze_faces(source, det_size_half)
            try:
                face_model = face_model_raw[select_face_index]
            except:
                logger.error("No face(s) found")
                return face_model_name
            logger.status("--Done!--")
        if save_mode and (face_model != "none" or face_model is not None):
            face_model_path = os.path.join(self.output_dir, face_model_name + ".safetensors")
            save_face_model(face_model,face_model_path)
        if image is None and face_model is None:
            logger.error("Please provide `face_model` or `image`")
        return face_model_name


class RestoreFace:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),               
                "facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],),
                "model": (get_model_names(get_restorers),),
                "visibility": ("FLOAT", {"default": 1, "min": 0.0, "max": 1, "step": 0.05}),
                "codeformer_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"
    CATEGORY = "ReActor"

    def __init__(self):
        self.face_helper = None

    def execute(self, image, model, visibility, codeformer_weight, facedetection):
        result = reactor.restore_face(self,image,model,visibility,codeformer_weight,facedetection)
        return (result,)

import numpy as np
from ultralytics import YOLO
from PIL import Image

# Load a pretrained YOLOv8n model
model = YOLO(task='detect', model='/root/autodl-tmp/ComfyUI/custom_nodes/comfyui-reactor-node/yolov8m_200e.pt')

class Mynode_2:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "input_image": ("IMAGE",),
                "source_image": ("IMAGE",),
            },
            "optional": {

            }
        }

    CATEGORY = "ReActor"
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "method"

    def method(self, input_image, source_image):
        input_image_tmp = input_image.squeeze()
        # Pytorch张量转PIL对象
        input_image_pil = Image.fromarray(
            np.clip(255. * input_image_tmp.cpu().numpy(), 0, 255).astype(np.uint8)).convert('RGBA')

        # Run inference on an image
        results = model.predict(source=input_image_pil, conf=0.5)
        # View results
        tmp = results[0].boxes.shape
        judge_face = tmp[0]
        print(judge_face)

        if judge_face == 0: # 等于0就是没检测出脸

            return (input_image,)

        else:
            enabled = True

            swap_model = "inswapper_128.onnx"
            facedetection = "retinaface_resnet50"
            face_restore_model = "GFPGANv1.4.pth"
            face_restore_visibility = 1
            codeformer_weight = 0.5
            detect_gender_input = "no"
            detect_gender_source = "no"
            input_faces_index = "0"
            source_faces_index = "0"
            console_log_level = 1

            class_reactor = reactor()
            change_face_img, face_model = class_reactor.execute(enabled, input_image, swap_model, detect_gender_source, detect_gender_input,
                                                                source_faces_index, input_faces_index, console_log_level, face_restore_model,
                                                                face_restore_visibility, codeformer_weight, facedetection, source_image=source_image,
                                                                face_model=None)

            return (change_face_img,)

NODE_CLASS_MAPPINGS = {
    "ReActorFaceSwap": reactor,
    "ReActorLoadFaceModel": LoadFaceModel,
    "ReActorSaveFaceModel": SaveFaceModel,
    "ReActorRestoreFace": RestoreFace,
    "face_detect": Mynode_2,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "ReActorFaceSwap": "ReActor - Fast Face Swap",
    "ReActorLoadFaceModel": "Load Face Model",
    "ReActorSaveFaceModel": "Save Face Model",
    "ReActorRestoreFace": "Restore Face",
    "face_detect": "face_detect - Reactor",
}