File size: 5,991 Bytes
e6043d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
from PIL import Image
import numpy as np
import torch
import cv2
import logging
import hashlib
from insightface.app.common import Face
from safetensors.torch import save_file, safe_open
from tqdm import tqdm
import urllib.request


def tensor_to_pil(img_tensor, batch_index=0):
    # Convert tensor of shape [batch_size, channels, height, width] at the batch_index to PIL Image
    img_tensor = img_tensor[batch_index].unsqueeze(0)
    i = 255. * img_tensor.cpu().numpy()
    img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8).squeeze())
    return img


def batch_tensor_to_pil(img_tensor):
    # Convert tensor of shape [batch_size, channels, height, width] to a list of PIL Images
    return [tensor_to_pil(img_tensor, i) for i in range(img_tensor.shape[0])]


def pil_to_tensor(image):
    # Takes a PIL image and returns a tensor of shape [1, height, width, channels]
    image = np.array(image).astype(np.float32) / 255.0
    image = torch.from_numpy(image).unsqueeze(0)
    if len(image.shape) == 3:  # If the image is grayscale, add a channel dimension
        image = image.unsqueeze(-1)
    return image


def batched_pil_to_tensor(images):
    # Takes a list of PIL images and returns a tensor of shape [batch_size, height, width, channels]
    return torch.cat([pil_to_tensor(image) for image in images], dim=0)


def img2tensor(imgs, bgr2rgb=True, float32=True):

    def _totensor(img, bgr2rgb, float32):
        if img.shape[2] == 3 and bgr2rgb:
            if img.dtype == 'float64':
                img = img.astype('float32')
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = torch.from_numpy(img.transpose(2, 0, 1))
        if float32:
            img = img.float()
        return img

    if isinstance(imgs, list):
        return [_totensor(img, bgr2rgb, float32) for img in imgs]
    else:
        return _totensor(imgs, bgr2rgb, float32)


def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):

    if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
        raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')

    if torch.is_tensor(tensor):
        tensor = [tensor]
    result = []
    for _tensor in tensor:
        _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
        _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])

        n_dim = _tensor.dim()
        if n_dim == 4:
            img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
            img_np = img_np.transpose(1, 2, 0)
            if rgb2bgr:
                img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
        elif n_dim == 3:
            img_np = _tensor.numpy()
            img_np = img_np.transpose(1, 2, 0)
            if img_np.shape[2] == 1:  # gray image
                img_np = np.squeeze(img_np, axis=2)
            else:
                if rgb2bgr:
                    img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
        elif n_dim == 2:
            img_np = _tensor.numpy()
        else:
            raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}')
        if out_type == np.uint8:
            # Unlike MATLAB, numpy.unit8() WILL NOT round by default.
            img_np = (img_np * 255.0).round()
        img_np = img_np.astype(out_type)
        result.append(img_np)
    if len(result) == 1:
        result = result[0]
    return result

def download(url, path, name):
    request = urllib.request.urlopen(url)
    total = int(request.headers.get('Content-Length', 0))
    with tqdm(total=total, desc=f'[ReActor] Downloading {name} to {path}', unit='B', unit_scale=True, unit_divisor=1024) as progress:
        urllib.request.urlretrieve(url, path, reporthook=lambda count, block_size, total_size: progress.update(block_size))

def move_path(old_path, new_path):
    if os.path.exists(old_path):
        try:
            models = os.listdir(old_path)
            for model in models:
                move_old_path = os.path.join(old_path, model)
                move_new_path = os.path.join(new_path, model)
                os.rename(move_old_path, move_new_path)
            os.rmdir(old_path)
        except Exception as e:
            print(f"Error: {e}")
            new_path = old_path

def addLoggingLevel(levelName, levelNum, methodName=None):
    if not methodName:
        methodName = levelName.lower()

    def logForLevel(self, message, *args, **kwargs):
        if self.isEnabledFor(levelNum):
            self._log(levelNum, message, args, **kwargs)

    def logToRoot(message, *args, **kwargs):
        logging.log(levelNum, message, *args, **kwargs)

    logging.addLevelName(levelNum, levelName)
    setattr(logging, levelName, levelNum)
    setattr(logging.getLoggerClass(), methodName, logForLevel)
    setattr(logging, methodName, logToRoot)

def get_image_md5hash(image: Image.Image):
    md5hash = hashlib.md5(image.tobytes())
    return md5hash.hexdigest()

def save_face_model(face: Face, filename: str) -> None:
    try:
        tensors = {
            "bbox": torch.tensor(face["bbox"]),
            "kps": torch.tensor(face["kps"]),
            "det_score": torch.tensor(face["det_score"]),
            "landmark_3d_68": torch.tensor(face["landmark_3d_68"]),
            "pose": torch.tensor(face["pose"]),
            "landmark_2d_106": torch.tensor(face["landmark_2d_106"]),
            "embedding": torch.tensor(face["embedding"]),
            "gender": torch.tensor(face["gender"]),
            "age": torch.tensor(face["age"]),
        }
        save_file(tensors, filename)
        print(f"Face model has been saved to '{filename}'")
    except Exception as e:
        print(f"Error: {e}")

def load_face_model(filename: str):
    face = {}
    with safe_open(filename, framework="pt") as f:
        for k in f.keys():
            face[k] = f.get_tensor(k).numpy()
    return Face(face)