--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-ehf-test results: [] --- # wav2vec2-ehf-test This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0648 - Wer: 0.1661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 5.3431 | 0.7812 | 250 | 3.0217 | 1.0 | | 2.9086 | 1.5625 | 500 | 2.9322 | 1.0 | | 2.0836 | 2.3438 | 750 | 0.6583 | 0.5862 | | 0.5632 | 3.125 | 1000 | 0.2877 | 0.3624 | | 0.3427 | 3.9062 | 1250 | 0.1959 | 0.2823 | | 0.2548 | 4.6875 | 1500 | 0.1463 | 0.2464 | | 0.217 | 5.4688 | 1750 | 0.1467 | 0.2340 | | 0.1769 | 6.25 | 2000 | 0.1217 | 0.2162 | | 0.1564 | 7.0312 | 2250 | 0.1100 | 0.2090 | | 0.1351 | 7.8125 | 2500 | 0.1062 | 0.2074 | | 0.12 | 8.5938 | 2750 | 0.1055 | 0.2022 | | 0.1161 | 9.375 | 3000 | 0.1039 | 0.2011 | | 0.1085 | 10.1562 | 3250 | 0.0988 | 0.1912 | | 0.097 | 10.9375 | 3500 | 0.0931 | 0.1879 | | 0.0895 | 11.7188 | 3750 | 0.0873 | 0.1869 | | 0.0846 | 12.5 | 4000 | 0.0807 | 0.1846 | | 0.0815 | 13.2812 | 4250 | 0.0826 | 0.1836 | | 0.0787 | 14.0625 | 4500 | 0.0780 | 0.1798 | | 0.0714 | 14.8438 | 4750 | 0.0732 | 0.1774 | | 0.0702 | 15.625 | 5000 | 0.0745 | 0.1778 | | 0.0637 | 16.4062 | 5250 | 0.0741 | 0.1764 | | 0.0608 | 17.1875 | 5500 | 0.0788 | 0.1758 | | 0.0575 | 17.9688 | 5750 | 0.0726 | 0.1727 | | 0.0529 | 18.75 | 6000 | 0.0727 | 0.1726 | | 0.0539 | 19.5312 | 6250 | 0.0704 | 0.1709 | | 0.0533 | 20.3125 | 6500 | 0.0683 | 0.1702 | | 0.0483 | 21.0938 | 6750 | 0.0643 | 0.1667 | | 0.0461 | 21.875 | 7000 | 0.0650 | 0.1696 | | 0.0442 | 22.6562 | 7250 | 0.0697 | 0.1687 | | 0.042 | 23.4375 | 7500 | 0.0696 | 0.1687 | | 0.0389 | 24.2188 | 7750 | 0.0689 | 0.1682 | | 0.0402 | 25.0 | 8000 | 0.0702 | 0.1683 | | 0.0365 | 25.7812 | 8250 | 0.0709 | 0.1669 | | 0.0315 | 26.5625 | 8500 | 0.0695 | 0.1672 | | 0.0349 | 27.3438 | 8750 | 0.0667 | 0.1662 | | 0.0292 | 28.125 | 9000 | 0.0666 | 0.1669 | | 0.0311 | 28.9062 | 9250 | 0.0652 | 0.1666 | | 0.0322 | 29.6875 | 9500 | 0.0648 | 0.1661 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.1.2 - Datasets 3.0.1 - Tokenizers 0.20.0