--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - timit_asr metrics: - wer model-index: - name: wav2vec2-base-timit-demo-google-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: timit_asr type: timit_asr config: clean split: None args: clean metrics: - name: Wer type: wer value: 0.3354696437185583 --- # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the timit_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.4743 - Wer: 0.3355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4394 | 4.0 | 500 | 1.2662 | 0.8530 | | 0.5192 | 8.0 | 1000 | 0.4308 | 0.4176 | | 0.1896 | 12.0 | 1500 | 0.4249 | 0.3656 | | 0.1158 | 16.0 | 2000 | 0.4405 | 0.3583 | | 0.0791 | 20.0 | 2500 | 0.4949 | 0.3481 | | 0.0578 | 24.0 | 3000 | 0.4895 | 0.3448 | | 0.0462 | 28.0 | 3500 | 0.4743 | 0.3355 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.1.2 - Datasets 3.0.1 - Tokenizers 0.20.0