|
import pdb |
|
|
|
import cv2 |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision.transforms import Compose |
|
import numpy as np |
|
|
|
from .dinov2 import DINOv2 |
|
from .util.blocks import FeatureFusionBlock, _make_scratch |
|
from .util.transform import Resize, NormalizeImage, PrepareForNet |
|
|
|
|
|
def _make_fusion_block(features, use_bn, size=None): |
|
return FeatureFusionBlock( |
|
features, |
|
nn.ReLU(False), |
|
deconv=False, |
|
bn=use_bn, |
|
expand=False, |
|
align_corners=True, |
|
size=size, |
|
) |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
def __init__(self, in_feature, out_feature): |
|
super().__init__() |
|
|
|
self.conv_block = nn.Sequential( |
|
nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(out_feature), |
|
nn.ReLU(True) |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv_block(x) |
|
|
|
|
|
class DPTHead(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
features=256, |
|
use_bn=False, |
|
out_channels=[256, 512, 1024, 1024], |
|
use_clstoken=False |
|
): |
|
super(DPTHead, self).__init__() |
|
|
|
self.use_clstoken = use_clstoken |
|
|
|
self.projects = nn.ModuleList([ |
|
nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channel, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) for out_channel in out_channels |
|
]) |
|
|
|
self.resize_layers = nn.ModuleList([ |
|
nn.ConvTranspose2d( |
|
in_channels=out_channels[0], |
|
out_channels=out_channels[0], |
|
kernel_size=4, |
|
stride=4, |
|
padding=0), |
|
nn.ConvTranspose2d( |
|
in_channels=out_channels[1], |
|
out_channels=out_channels[1], |
|
kernel_size=2, |
|
stride=2, |
|
padding=0), |
|
nn.Identity(), |
|
nn.Conv2d( |
|
in_channels=out_channels[3], |
|
out_channels=out_channels[3], |
|
kernel_size=3, |
|
stride=2, |
|
padding=1) |
|
]) |
|
|
|
if use_clstoken: |
|
self.readout_projects = nn.ModuleList() |
|
for _ in range(len(self.projects)): |
|
self.readout_projects.append( |
|
nn.Sequential( |
|
nn.Linear(2 * in_channels, in_channels), |
|
nn.GELU())) |
|
|
|
self.scratch = _make_scratch( |
|
out_channels, |
|
features, |
|
groups=1, |
|
expand=False, |
|
) |
|
|
|
self.scratch.stem_transpose = None |
|
|
|
self.scratch.refinenet1 = _make_fusion_block(features, use_bn) |
|
self.scratch.refinenet2 = _make_fusion_block(features, use_bn) |
|
self.scratch.refinenet3 = _make_fusion_block(features, use_bn) |
|
self.scratch.refinenet4 = _make_fusion_block(features, use_bn) |
|
|
|
head_features_1 = features |
|
head_features_2 = 32 |
|
|
|
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1) |
|
self.scratch.output_conv2 = nn.Sequential( |
|
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1), |
|
nn.ReLU(True), |
|
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0), |
|
nn.ReLU(True), |
|
nn.Identity(), |
|
) |
|
|
|
def forward(self, out_features, patch_h, patch_w): |
|
out = [] |
|
for i, x in enumerate(out_features): |
|
if self.use_clstoken: |
|
x, cls_token = x[0], x[1] |
|
readout = cls_token.unsqueeze(1).expand_as(x) |
|
x = self.readout_projects[i](torch.cat((x, readout), -1)) |
|
else: |
|
x = x[0] |
|
|
|
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) |
|
|
|
x = self.projects[i](x) |
|
x = self.resize_layers[i](x) |
|
|
|
out.append(x) |
|
|
|
layer_1, layer_2, layer_3, layer_4 = out |
|
|
|
layer_1_rn = self.scratch.layer1_rn(layer_1) |
|
layer_2_rn = self.scratch.layer2_rn(layer_2) |
|
layer_3_rn = self.scratch.layer3_rn(layer_3) |
|
layer_4_rn = self.scratch.layer4_rn(layer_4) |
|
|
|
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) |
|
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) |
|
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) |
|
path_1 = self.scratch.refinenet1(path_2, layer_1_rn) |
|
|
|
out = self.scratch.output_conv1(path_1) |
|
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True) |
|
out = self.scratch.output_conv2(out) |
|
|
|
return out |
|
|
|
class DepthAnythingV2(nn.Module): |
|
def __init__( |
|
self, |
|
encoder='vitl', |
|
features=256, |
|
out_channels=[256, 512, 1024, 1024], |
|
use_bn=False, |
|
use_clstoken=False |
|
): |
|
super(DepthAnythingV2, self).__init__() |
|
|
|
self.intermediate_layer_idx = { |
|
'vits': [2, 5, 8, 11], |
|
'vitb': [2, 5, 8, 11], |
|
'vitl': [4, 11, 17, 23], |
|
'vitg': [9, 19, 29, 39] |
|
} |
|
|
|
self.encoder = encoder |
|
self.pretrained = DINOv2(model_name=encoder) |
|
|
|
self.depth_head = DPTHead(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken) |
|
|
|
@torch.no_grad() |
|
def forward(self, image, input_size=518, device='cuda:0'): |
|
x, (h, w) = self.image2tensor(image, input_size, device) |
|
|
|
patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14 |
|
features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True) |
|
|
|
depth = self.depth_head(features, patch_h, patch_w) |
|
depth = F.relu(depth).squeeze(1) |
|
depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True).squeeze() |
|
return depth |
|
|
|
@torch.no_grad() |
|
def infer_image(self, raw_image, input_size=518): |
|
image, (h, w) = self.image2tensor(raw_image, input_size) |
|
|
|
depth = self.forward(image) |
|
|
|
depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0] |
|
|
|
return depth |
|
|
|
def image2tensor(self, raw_image, input_size=518, device='cuda'): |
|
transform = Compose([ |
|
Resize( |
|
width=input_size, |
|
height=input_size, |
|
resize_target=False, |
|
keep_aspect_ratio=True, |
|
ensure_multiple_of=14, |
|
resize_method='lower_bound', |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
PrepareForNet(), |
|
]) |
|
|
|
h, w = raw_image.shape[-2:] |
|
raw_image = np.moveaxis(raw_image, 1, -1) |
|
images = [] |
|
for i, single_image in enumerate(raw_image): |
|
image = cv2.cvtColor(single_image, cv2.COLOR_BGR2RGB) / 255.0 |
|
image = transform({'image': image})['image'] |
|
images.append(torch.from_numpy(image)) |
|
images = torch.stack(images, dim=0) |
|
images = images.to(device) |
|
return images, (h, w) |
|
|