|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Optional |
|
|
|
from torch import Tensor, nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class SwiGLUFFN(nn.Module): |
|
def __init__( |
|
self, |
|
in_features: int, |
|
hidden_features: Optional[int] = None, |
|
out_features: Optional[int] = None, |
|
act_layer: Callable[..., nn.Module] = None, |
|
drop: float = 0.0, |
|
bias: bool = True, |
|
) -> None: |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) |
|
self.w3 = nn.Linear(hidden_features, out_features, bias=bias) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x12 = self.w12(x) |
|
x1, x2 = x12.chunk(2, dim=-1) |
|
hidden = F.silu(x1) * x2 |
|
return self.w3(hidden) |
|
|
|
|
|
try: |
|
from xformers.ops import SwiGLU |
|
|
|
XFORMERS_AVAILABLE = True |
|
except ImportError: |
|
SwiGLU = SwiGLUFFN |
|
XFORMERS_AVAILABLE = False |
|
|
|
|
|
class SwiGLUFFNFused(SwiGLU): |
|
def __init__( |
|
self, |
|
in_features: int, |
|
hidden_features: Optional[int] = None, |
|
out_features: Optional[int] = None, |
|
act_layer: Callable[..., nn.Module] = None, |
|
drop: float = 0.0, |
|
bias: bool = True, |
|
) -> None: |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 |
|
super().__init__( |
|
in_features=in_features, |
|
hidden_features=hidden_features, |
|
out_features=out_features, |
|
bias=bias, |
|
) |
|
|