|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
from .base_depth_dataset import BaseDepthDataset, DepthFileNameMode |
|
from .kitti_dataset import KITTIDataset |
|
|
|
class VirtualKITTIDataset(BaseDepthDataset): |
|
def __init__( |
|
self, |
|
kitti_bm_crop, |
|
valid_mask_crop, |
|
**kwargs, |
|
) -> None: |
|
super().__init__( |
|
|
|
min_depth=1e-5, |
|
max_depth=80, |
|
has_filled_depth=False, |
|
name_mode=DepthFileNameMode.id, |
|
**kwargs, |
|
) |
|
self.kitti_bm_crop = kitti_bm_crop |
|
self.valid_mask_crop = valid_mask_crop |
|
assert self.valid_mask_crop in [ |
|
None, |
|
"garg", |
|
"eigen", |
|
], f"Unknown crop type: {self.valid_mask_crop}" |
|
|
|
|
|
self.filenames = self.filenames |
|
|
|
def _read_depth_file(self, rel_path): |
|
depth_in = self._read_image(rel_path) |
|
|
|
depth_decoded = depth_in / 100.0 |
|
return depth_decoded |
|
|
|
def _load_rgb_data(self, rgb_rel_path): |
|
rgb_data = super()._load_rgb_data(rgb_rel_path) |
|
if self.kitti_bm_crop: |
|
rgb_data = { |
|
k: KITTIDataset.kitti_benchmark_crop(v) for k, v in rgb_data.items() |
|
} |
|
return rgb_data |
|
|
|
def _load_depth_data(self, depth_rel_path, filled_rel_path=None): |
|
depth_data = super()._load_depth_data(depth_rel_path, filled_rel_path) |
|
if self.kitti_bm_crop: |
|
depth_data = { |
|
k: KITTIDataset.kitti_benchmark_crop(v) for k, v in depth_data.items() |
|
} |
|
return depth_data |
|
|
|
def _get_valid_mask(self, depth: torch.Tensor): |
|
|
|
valid_mask = super()._get_valid_mask(depth) |
|
|
|
if self.valid_mask_crop is not None: |
|
eval_mask = torch.zeros_like(valid_mask.squeeze()).bool() |
|
gt_height, gt_width = eval_mask.shape |
|
|
|
if "garg" == self.valid_mask_crop: |
|
eval_mask[ |
|
int(0.40810811 * gt_height) : int(0.99189189 * gt_height), |
|
int(0.03594771 * gt_width) : int(0.96405229 * gt_width), |
|
] = 1 |
|
elif "eigen" == self.valid_mask_crop: |
|
eval_mask[ |
|
int(0.3324324 * gt_height) : int(0.91351351 * gt_height), |
|
int(0.0359477 * gt_width) : int(0.96405229 * gt_width), |
|
] = 1 |
|
|
|
eval_mask.reshape(valid_mask.shape) |
|
valid_mask = torch.logical_and(valid_mask, eval_mask) |
|
return valid_mask |
|
|