|
|
|
|
|
|
|
|
|
import pandas as pd |
|
import torch |
|
|
|
|
|
|
|
class MetricTracker: |
|
def __init__(self, *keys, writer=None): |
|
self.writer = writer |
|
self._data = pd.DataFrame(index=keys, columns=["total", "counts", "average"]) |
|
self.reset() |
|
|
|
def reset(self): |
|
for col in self._data.columns: |
|
self._data[col].values[:] = 0 |
|
|
|
def update(self, key, value, n=1): |
|
if self.writer is not None: |
|
self.writer.add_scalar(key, value) |
|
self._data.loc[key, "total"] += value * n |
|
self._data.loc[key, "counts"] += n |
|
self._data.loc[key, "average"] = self._data.total[key] / self._data.counts[key] |
|
|
|
def avg(self, key): |
|
return self._data.average[key] |
|
|
|
def result(self): |
|
return dict(self._data.average) |
|
|
|
def abs_relative_difference(output, target, valid_mask=None): |
|
actual_output = output |
|
actual_target = target |
|
abs_relative_diff = torch.abs(actual_output - actual_target) / actual_target |
|
if valid_mask is not None: |
|
abs_relative_diff[~valid_mask] = 0 |
|
n = valid_mask.sum((-1, -2)) |
|
else: |
|
n = output.shape[-1] * output.shape[-2] |
|
abs_relative_diff = torch.sum(abs_relative_diff, (-1, -2)) / n |
|
return abs_relative_diff.mean() |
|
|
|
|
|
def squared_relative_difference(output, target, valid_mask=None): |
|
actual_output = output |
|
actual_target = target |
|
square_relative_diff = ( |
|
torch.pow(torch.abs(actual_output - actual_target), 2) / actual_target |
|
) |
|
if valid_mask is not None: |
|
square_relative_diff[~valid_mask] = 0 |
|
n = valid_mask.sum((-1, -2)) |
|
else: |
|
n = output.shape[-1] * output.shape[-2] |
|
square_relative_diff = torch.sum(square_relative_diff, (-1, -2)) / n |
|
return square_relative_diff.mean() |
|
|
|
|
|
def rmse_linear(output, target, valid_mask=None): |
|
actual_output = output |
|
actual_target = target |
|
diff = actual_output - actual_target |
|
if valid_mask is not None: |
|
diff[~valid_mask] = 0 |
|
n = valid_mask.sum((-1, -2)) |
|
else: |
|
n = output.shape[-1] * output.shape[-2] |
|
diff2 = torch.pow(diff, 2) |
|
mse = torch.sum(diff2, (-1, -2)) / n |
|
rmse = torch.sqrt(mse) |
|
return rmse.mean() |
|
|
|
|
|
def rmse_log(output, target, valid_mask=None): |
|
diff = torch.log(output) - torch.log(target) |
|
if valid_mask is not None: |
|
diff[~valid_mask] = 0 |
|
n = valid_mask.sum((-1, -2)) |
|
else: |
|
n = output.shape[-1] * output.shape[-2] |
|
diff2 = torch.pow(diff, 2) |
|
mse = torch.sum(diff2, (-1, -2)) / n |
|
rmse = torch.sqrt(mse) |
|
return rmse.mean() |
|
|
|
|
|
def log10(output, target, valid_mask=None): |
|
if valid_mask is not None: |
|
diff = torch.abs( |
|
torch.log10(output[valid_mask]) - torch.log10(target[valid_mask]) |
|
) |
|
else: |
|
diff = torch.abs(torch.log10(output) - torch.log10(target)) |
|
return diff.mean() |
|
|
|
|
|
|
|
def threshold_percentage(output, target, threshold_val, valid_mask=None): |
|
d1 = output / target |
|
d2 = target / output |
|
max_d1_d2 = torch.max(d1, d2) |
|
zero = torch.zeros(*output.shape) |
|
one = torch.ones(*output.shape) |
|
bit_mat = torch.where(max_d1_d2.cpu() < threshold_val, one, zero) |
|
if valid_mask is not None: |
|
bit_mat[~valid_mask] = 0 |
|
n = valid_mask.sum((-1, -2)) |
|
else: |
|
n = output.shape[-1] * output.shape[-2] |
|
count_mat = torch.sum(bit_mat, (-1, -2)) |
|
threshold_mat = count_mat / n.cpu() |
|
return threshold_mat.mean() |
|
|
|
|
|
def delta1_acc(pred, gt, valid_mask): |
|
return threshold_percentage(pred, gt, 1.25, valid_mask) |
|
|
|
|
|
def delta2_acc(pred, gt, valid_mask): |
|
return threshold_percentage(pred, gt, 1.25**2, valid_mask) |
|
|
|
|
|
def delta3_acc(pred, gt, valid_mask): |
|
return threshold_percentage(pred, gt, 1.25**3, valid_mask) |
|
|
|
|
|
def i_rmse(output, target, valid_mask=None): |
|
output_inv = 1.0 / output |
|
target_inv = 1.0 / target |
|
diff = output_inv - target_inv |
|
if valid_mask is not None: |
|
diff[~valid_mask] = 0 |
|
n = valid_mask.sum((-1, -2)) |
|
else: |
|
n = output.shape[-1] * output.shape[-2] |
|
diff2 = torch.pow(diff, 2) |
|
mse = torch.sum(diff2, (-1, -2)) / n |
|
rmse = torch.sqrt(mse) |
|
return rmse.mean() |
|
|
|
|
|
def silog_rmse(depth_pred, depth_gt, valid_mask=None): |
|
diff = torch.log(depth_pred) - torch.log(depth_gt) |
|
if valid_mask is not None: |
|
diff[~valid_mask] = 0 |
|
n = valid_mask.sum((-1, -2)) |
|
else: |
|
n = depth_gt.shape[-2] * depth_gt.shape[-1] |
|
|
|
diff2 = torch.pow(diff, 2) |
|
|
|
first_term = torch.sum(diff2, (-1, -2)) / n |
|
second_term = torch.pow(torch.sum(diff, (-1, -2)), 2) / (n**2) |
|
loss = torch.sqrt(torch.mean(first_term - second_term)) * 100 |
|
return loss |
|
|