|
|
|
|
|
|
|
import torch |
|
import logging |
|
|
|
|
|
def get_depth_normalizer(cfg_normalizer): |
|
if cfg_normalizer is None: |
|
|
|
def identical(x): |
|
return x |
|
|
|
depth_transform = identical |
|
|
|
elif "scale_shift_depth" == cfg_normalizer.type: |
|
depth_transform = ScaleShiftDepthNormalizer( |
|
norm_min=cfg_normalizer.norm_min, |
|
norm_max=cfg_normalizer.norm_max, |
|
min_max_quantile=cfg_normalizer.min_max_quantile, |
|
clip=cfg_normalizer.clip, |
|
) |
|
else: |
|
raise NotImplementedError |
|
return depth_transform |
|
|
|
|
|
class DepthNormalizerBase: |
|
is_absolute = None |
|
far_plane_at_max = None |
|
|
|
def __init__( |
|
self, |
|
norm_min=-1.0, |
|
norm_max=1.0, |
|
) -> None: |
|
self.norm_min = norm_min |
|
self.norm_max = norm_max |
|
raise NotImplementedError |
|
|
|
def __call__(self, depth, valid_mask=None, clip=None): |
|
raise NotImplementedError |
|
|
|
def denormalize(self, depth_norm, **kwargs): |
|
|
|
|
|
raise NotImplementedError |
|
|
|
class ScaleShiftDepthNormalizer(DepthNormalizerBase): |
|
""" |
|
Use near and far plane to linearly normalize depth, |
|
i.e. d' = d * s + t, |
|
where near plane is mapped to `norm_min`, and far plane is mapped to `norm_max` |
|
Near and far planes are determined by taking quantile values. |
|
""" |
|
|
|
is_absolute = False |
|
far_plane_at_max = True |
|
|
|
def __init__( |
|
self, norm_min=-1.0, norm_max=1.0, min_max_quantile=0.02, clip=True |
|
) -> None: |
|
self.norm_min = norm_min |
|
self.norm_max = norm_max |
|
self.norm_range = self.norm_max - self.norm_min |
|
self.min_quantile = min_max_quantile |
|
self.max_quantile = 1.0 - self.min_quantile |
|
self.clip = clip |
|
|
|
def __call__(self, depth_linear, valid_mask=None, clip=None): |
|
clip = clip if clip is not None else self.clip |
|
|
|
if valid_mask is None: |
|
valid_mask = torch.ones_like(depth_linear).bool() |
|
valid_mask = valid_mask & (depth_linear > 0) |
|
|
|
|
|
_min, _max = torch.quantile( |
|
depth_linear[valid_mask], |
|
torch.tensor([self.min_quantile, self.max_quantile]), |
|
) |
|
|
|
|
|
depth_norm_linear = (depth_linear - _min) / ( |
|
_max - _min |
|
) * self.norm_range + self.norm_min |
|
|
|
if clip: |
|
depth_norm_linear = torch.clip( |
|
depth_norm_linear, self.norm_min, self.norm_max |
|
) |
|
|
|
return depth_norm_linear |
|
|
|
def scale_back(self, depth_norm): |
|
|
|
depth_linear = (depth_norm - self.norm_min) / self.norm_range |
|
return depth_linear |
|
|
|
def denormalize(self, depth_norm, **kwargs): |
|
logging.warning(f"{self.__class__} is not revertible without GT") |
|
return self.scale_back(depth_norm=depth_norm) |
|
|