Inpaint / src /trainer /marigold_trainer.py
ZehanWang's picture
Upload folder using huggingface_hub
864ec44 verified
raw
history blame
45.1 kB
# An official reimplemented version of Marigold training script.
# Last modified: 2024-04-29
#
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# If you use or adapt this code, please attribute to https://github.com/prs-eth/marigold.
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import logging
import os
import pdb
import shutil
from datetime import datetime
from typing import List, Union
import random
import safetensors
import numpy as np
import torch
from diffusers import DDPMScheduler
from omegaconf import OmegaConf
from torch.nn import Conv2d
from torch.nn.parameter import Parameter
from torch.optim import Adam
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from tqdm import tqdm
from PIL import Image
# import torch.optim.lr_scheduler
from marigold.marigold_pipeline import MarigoldPipeline, MarigoldDepthOutput
from src.util import metric
from src.util.data_loader import skip_first_batches
from src.util.logging_util import tb_logger, eval_dic_to_text
from src.util.loss import get_loss
from src.util.lr_scheduler import IterExponential
from src.util.metric import MetricTracker
from src.util.multi_res_noise import multi_res_noise_like
from src.util.alignment import align_depth_least_square, depth2disparity, disparity2depth
from src.util.seeding import generate_seed_sequence
from accelerate import Accelerator
import os
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
class MarigoldTrainer:
def __init__(
self,
cfg: OmegaConf,
model: MarigoldPipeline,
train_dataloader: DataLoader,
device,
base_ckpt_dir,
out_dir_ckpt,
out_dir_eval,
out_dir_vis,
accumulation_steps: int,
depth_model = None,
separate_list: List = None,
val_dataloaders: List[DataLoader] = None,
vis_dataloaders: List[DataLoader] = None,
timestep_method: str = 'unidiffuser'
):
self.cfg: OmegaConf = cfg
self.model: MarigoldPipeline = model
self.depth_model = depth_model
self.device = device
self.seed: Union[int, None] = (
self.cfg.trainer.init_seed
) # used to generate seed sequence, set to `None` to train w/o seeding
self.out_dir_ckpt = out_dir_ckpt
self.out_dir_eval = out_dir_eval
self.out_dir_vis = out_dir_vis
self.train_loader: DataLoader = train_dataloader
self.val_loaders: List[DataLoader] = val_dataloaders
self.vis_loaders: List[DataLoader] = vis_dataloaders
self.accumulation_steps: int = accumulation_steps
self.separate_list = separate_list
self.timestep_method = timestep_method
# Adapt input layers
# if 8 != self.model.unet.config["in_channels"]:
# self._replace_unet_conv_in()
# if 8 != self.model.unet.config["out_channels"]:
# self._replace_unet_conv_out()
self.prompt = ['a view of a city skyline from a bridge',
'a man and a woman sitting on a couch',
'a black car parked in a parking lot next to the water',
'Enchanted forest with glowing plants, fairies, and ancient castle.',
'Futuristic city with skyscrapers, neon lights, and hovering vehicles.',
'Fantasy mountain landscape with waterfalls, dragons, and mythical creatures.']
# self.generator = torch.Generator('cuda:0').manual_seed(1024)
# Encode empty text prompt
self.model.encode_empty_text()
self.empty_text_embed = self.model.empty_text_embed.detach().clone().to(device)
self.model.unet.enable_xformers_memory_efficient_attention()
# Trainability
self.model.text_encoder.requires_grad_(False)
# self.model.unet.requires_grad_(True)
grad_part = filter(lambda p: p.requires_grad, self.model.unet.parameters())
# Optimizer !should be defined after input layer is adapted
lr = self.cfg.lr
self.optimizer = Adam(grad_part, lr=lr)
total_params = sum(p.numel() for p in self.model.unet.parameters())
total_params_m = total_params / 1_000_000
print(f"Total parameters: {total_params_m:.2f}M")
trainable_params = sum(p.numel() for p in self.model.unet.parameters() if p.requires_grad)
trainable_params_m = trainable_params / 1_000_000
print(f"Trainable parameters: {trainable_params_m:.2f}M")
# LR scheduler
lr_func = IterExponential(
total_iter_length=self.cfg.lr_scheduler.kwargs.total_iter,
final_ratio=self.cfg.lr_scheduler.kwargs.final_ratio,
warmup_steps=self.cfg.lr_scheduler.kwargs.warmup_steps,
)
self.lr_scheduler = LambdaLR(optimizer=self.optimizer, lr_lambda=lr_func)
# Loss
self.loss = get_loss(loss_name=self.cfg.loss.name, **self.cfg.loss.kwargs)
# Training noise scheduler
self.training_noise_scheduler: DDPMScheduler = DDPMScheduler.from_pretrained(
os.path.join(
cfg.trainer.training_noise_scheduler.pretrained_path,
"scheduler",
)
)
# pdb.set_trace()
self.prediction_type = self.training_noise_scheduler.config.prediction_type
assert (
self.prediction_type == self.model.scheduler.config.prediction_type
), "Different prediction types"
self.scheduler_timesteps = (
self.training_noise_scheduler.config.num_train_timesteps
)
# Eval metrics
self.metric_funcs = [getattr(metric, _met) for _met in cfg.eval.eval_metrics]
self.train_metrics = MetricTracker(*["loss", 'rgb_loss', 'depth_loss'])
self.val_metrics = MetricTracker(*[m.__name__ for m in self.metric_funcs])
# main metric for best checkpoint saving
self.main_val_metric = cfg.validation.main_val_metric
self.main_val_metric_goal = cfg.validation.main_val_metric_goal
assert (
self.main_val_metric in cfg.eval.eval_metrics
), f"Main eval metric `{self.main_val_metric}` not found in evaluation metrics."
self.best_metric = 1e8 if "minimize" == self.main_val_metric_goal else -1e8
# Settings
self.max_epoch = self.cfg.max_epoch
self.max_iter = self.cfg.max_iter
self.gradient_accumulation_steps = accumulation_steps
self.gt_depth_type = self.cfg.gt_depth_type
self.gt_mask_type = self.cfg.gt_mask_type
self.save_period = self.cfg.trainer.save_period
self.backup_period = self.cfg.trainer.backup_period
self.val_period = self.cfg.trainer.validation_period
self.vis_period = self.cfg.trainer.visualization_period
# Multi-resolution noise
self.apply_multi_res_noise = self.cfg.multi_res_noise is not None
if self.apply_multi_res_noise:
self.mr_noise_strength = self.cfg.multi_res_noise.strength
self.annealed_mr_noise = self.cfg.multi_res_noise.annealed
self.mr_noise_downscale_strategy = (
self.cfg.multi_res_noise.downscale_strategy
)
# Internal variables
self.epoch = 0
self.n_batch_in_epoch = 0 # batch index in the epoch, used when resume training
self.effective_iter = 0 # how many times optimizer.step() is called
self.in_evaluation = False
self.global_seed_sequence: List = [] # consistent global seed sequence, used to seed random generator, to ensure consistency when resuming
def _replace_unet_conv_in(self):
# replace the first layer to accept 8 in_channels
_weight = self.model.unet.conv_in.weight.clone() # [320, 4, 3, 3]
_bias = self.model.unet.conv_in.bias.clone() # [320]
zero_weight = torch.zeros(_weight.shape).to(_weight.device)
_weight = torch.cat([_weight, zero_weight], dim=1)
# _weight = _weight.repeat((1, 2, 1, 1)) # Keep selected channel(s)
# half the activation magnitude
# _weight *= 0.5
# new conv_in channel
_n_convin_out_channel = self.model.unet.conv_in.out_channels
_new_conv_in = Conv2d(
8, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
_new_conv_in.weight = Parameter(_weight)
_new_conv_in.bias = Parameter(_bias)
self.model.unet.conv_in = _new_conv_in
logging.info("Unet conv_in layer is replaced")
# replace config
self.model.unet.config["in_channels"] = 8
logging.info("Unet config is updated")
return
def _replace_unet_conv_out(self):
# replace the first layer to accept 8 in_channels
_weight = self.model.unet.conv_out.weight.clone() # [8, 320, 3, 3]
_bias = self.model.unet.conv_out.bias.clone() # [320]
_weight = _weight.repeat((2, 1, 1, 1)) # Keep selected channel(s)
_bias = _bias.repeat((2))
# half the activation magnitude
# new conv_in channel
_n_convin_out_channel = self.model.unet.conv_out.out_channels
_new_conv_out = Conv2d(
_n_convin_out_channel, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
_new_conv_out.weight = Parameter(_weight)
_new_conv_out.bias = Parameter(_bias)
self.model.unet.conv_out = _new_conv_out
logging.info("Unet conv_out layer is replaced")
# replace config
self.model.unet.config["out_channels"] = 8
logging.info("Unet config is updated")
return
def parallel_train(self, t_end=None, accelerator=None):
logging.info("Start training")
# pdb.set_trace()
self.model, self.optimizer, self.train_loader, self.lr_scheduler = accelerator.prepare(
self.model, self.optimizer, self.train_loader, self.lr_scheduler
)
self.depth_model = accelerator.prepare(self.depth_model)
self.accelerator = accelerator
if self.val_loaders is not None:
for idx, loader in enumerate(self.val_loaders):
self.val_loaders[idx] = accelerator.prepare(loader)
if os.path.exists(os.path.join(self.out_dir_ckpt, 'latest')):
accelerator.load_state(os.path.join(self.out_dir_ckpt, 'latest'))
self.load_miscs(os.path.join(self.out_dir_ckpt, 'latest'))
self.train_metrics.reset()
accumulated_step = 0
for epoch in range(self.epoch, self.max_epoch + 1):
self.epoch = epoch
logging.debug(f"epoch: {self.epoch}")
# Skip previous batches when resume
for batch in skip_first_batches(self.train_loader, self.n_batch_in_epoch):
self.model.unet.train()
# globally consistent random generators
if self.seed is not None:
local_seed = self._get_next_seed()
rand_num_generator = torch.Generator(device=self.model.device)
rand_num_generator.manual_seed(local_seed)
else:
rand_num_generator = None
# >>> With gradient accumulation >>>
# Get data
rgb = batch["rgb_norm"].to(self.model.device)
if self.gt_depth_type not in batch:
with torch.no_grad():
disparities = self.depth_model(batch["rgb_int"].numpy().astype(np.uint8), 518, device=self.model.device)
depth_gt_for_latent = []
for disparity_map in disparities:
depth_map = ((disparity_map - disparity_map.min()) / (disparity_map.max() - disparity_map.min())) * 2 - 1
depth_gt_for_latent.append(depth_map)
depth_gt_for_latent = torch.stack(depth_gt_for_latent, dim=0)
else:
if "least_square_disparity" == self.cfg.eval.alignment:
# convert GT depth -> GT disparity
depth_raw_ts = batch["depth_raw_linear"].squeeze()
depth_raw = depth_raw_ts.cpu().numpy()
# pdb.set_trace()
disparities = depth2disparity(
depth=depth_raw
)
depth_gt_for_latent = []
for disparity_map in disparities:
depth_map = ((disparity_map - disparity_map.min()) / (
disparity_map.max() - disparity_map.min())) * 2 - 1
depth_gt_for_latent.append(torch.from_numpy(depth_map))
depth_gt_for_latent = torch.stack(depth_gt_for_latent, dim=0).to(self.model.device)
else:
depth_gt_for_latent = batch[self.gt_depth_type].to(self.model.device)
batch_size = rgb.shape[0]
if self.gt_mask_type is not None:
valid_mask_for_latent = batch[self.gt_mask_type].to(self.model.device)
invalid_mask = ~valid_mask_for_latent
valid_mask_down = ~torch.max_pool2d(
invalid_mask.float(), 8, 8
).bool()
valid_mask_down = valid_mask_down.repeat((1, 4, 1, 1))
with torch.no_grad():
# Encode image
rgb_latent = self.model.encode_rgb(rgb) # [B, 4, h, w]
# Encode GT depth
gt_depth_latent = self.encode_depth(
depth_gt_for_latent
) # [B, 4, h, w]
# Sample a random timestep for each image
if self.cfg.loss.depth_factor == 1:
rgb_timesteps = torch.zeros(
(batch_size),
device=self.model.device
).long() # [B]
depth_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
elif self.timestep_method == 'unidiffuser':
rgb_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
depth_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
elif self.timestep_method == 'joint':
rgb_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
depth_timesteps = rgb_timesteps # [B]
elif self.timestep_method == 'partition':
rand_num = random.random()
if rand_num < 0.3333:
# joint generation
rgb_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
depth_timesteps = rgb_timesteps
elif rand_num < 0.6666:
# image2depth generation
rgb_timesteps = torch.zeros(
(batch_size),
device=self.model.device
).long() # [B]
depth_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
else:
# depth2image generation
rgb_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
depth_timesteps = torch.zeros(
(batch_size),
device=self.model.device
).long() # [B]
# Sample noise
if self.apply_multi_res_noise:
rgb_strength = self.mr_noise_strength
if self.annealed_mr_noise:
# calculate strength depending on t
rgb_strength = rgb_strength * (rgb_timesteps / self.scheduler_timesteps)
rgb_noise = multi_res_noise_like(
rgb_latent,
strength=rgb_strength,
downscale_strategy=self.mr_noise_downscale_strategy,
generator=rand_num_generator,
device=self.model.device,
)
depth_strength = self.mr_noise_strength
if self.annealed_mr_noise:
# calculate strength depending on t
depth_strength = depth_strength * (depth_timesteps / self.scheduler_timesteps)
depth_noise = multi_res_noise_like(
gt_depth_latent,
strength=depth_strength,
downscale_strategy=self.mr_noise_downscale_strategy,
generator=rand_num_generator,
device=self.model.device,
)
else:
rgb_noise = torch.randn(
rgb_latent.shape,
device=self.model.device,
generator=rand_num_generator,
) # [B, 8, h, w]
depth_noise = torch.randn(
gt_depth_latent.shape,
device=self.model.device,
generator=rand_num_generator,
) # [B, 8, h, w]
# Add noise to the latents (diffusion forward process)
if depth_timesteps.sum() == 0:
noisy_rgb_latents = rgb_latent
else:
noisy_rgb_latents = self.training_noise_scheduler.add_noise(
rgb_latent, rgb_noise, rgb_timesteps
) # [B, 4, h, w]
noisy_depth_latents = self.training_noise_scheduler.add_noise(
gt_depth_latent, depth_noise, depth_timesteps
) # [B, 4, h, w]
noisy_latents = torch.cat(
[noisy_rgb_latents, noisy_depth_latents], dim=1
).float() # [B, 8, h, w]
# Text embedding
input_ids = self.model.tokenizer(
batch['text'],
padding="max_length",
max_length=self.model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
input_ids = {k: v.to(self.model.device) for k, v in input_ids.items()}
text_embed = self.model.text_encoder(**input_ids)[0]
# text_embed = self.empty_text_embed.to(device).repeat(
# (batch_size, 1, 1)
# ) # [B, 77, 1024]
model_pred = self.model.unet(
noisy_latents, rgb_timesteps, depth_timesteps, text_embed
).sample # [B, 4, h, w]
if torch.isnan(model_pred).any():
logging.warning("model_pred contains NaN.")
# Get the target for loss depending on the prediction type
if "sample" == self.prediction_type:
rgb_target = rgb_latent
depth_target = gt_depth_latent
elif "epsilon" == self.prediction_type:
rgb_target = rgb_latent
depth_target = gt_depth_latent
elif "v_prediction" == self.prediction_type:
rgb_target = self.training_noise_scheduler.get_velocity(
rgb_latent, rgb_noise, rgb_timesteps
) # [B, 4, h, w]
depth_target = self.training_noise_scheduler.get_velocity(
gt_depth_latent, depth_noise, depth_timesteps
) # [B, 4, h, w]
else:
raise ValueError(f"Unknown prediction type {self.prediction_type}")
# Masked latent loss
with accelerator.accumulate(self.model):
if self.gt_mask_type is not None:
depth_loss = self.loss(
model_pred[:, 4:, :, :][valid_mask_down].float(),
depth_target[valid_mask_down].float(),
)
else:
depth_loss = self.loss(model_pred[:, 4:, :, :].float(),depth_target.float())
rgb_loss = self.loss(model_pred[:, 0:4, :, :].float(), rgb_target.float())
if torch.sum(rgb_timesteps) == 0 or torch.sum(rgb_timesteps) == len(rgb_timesteps) * self.scheduler_timesteps:
loss = depth_loss
elif torch.sum(depth_timesteps) == 0 or torch.sum(depth_timesteps) == len(depth_timesteps) * self.scheduler_timesteps:
loss = rgb_loss
else:
loss = self.cfg.loss.depth_factor * depth_loss + (1 - self.cfg.loss.depth_factor) * rgb_loss
self.train_metrics.update("loss", loss.item())
self.train_metrics.update("rgb_loss", rgb_loss.item())
self.train_metrics.update("depth_loss", depth_loss.item())
# loss = loss / self.gradient_accumulation_steps
accelerator.backward(loss)
self.optimizer.step()
self.optimizer.zero_grad()
# loss.backward()
self.n_batch_in_epoch += 1
# print(accelerator.process_index, self.lr_scheduler.get_last_lr())
self.lr_scheduler.step(self.effective_iter)
if accelerator.sync_gradients:
accumulated_step += 1
if accumulated_step >= self.gradient_accumulation_steps:
accumulated_step = 0
self.effective_iter += 1
if accelerator.is_main_process:
# Log to tensorboard
if self.effective_iter == 1:
generator = torch.Generator(self.model.device).manual_seed(1024)
img = self.model.generate_rgbd(self.prompt, num_inference_steps=50, generator=generator,
show_pbar=True)
for idx in range(len(self.prompt)):
tb_logger.writer.add_image(f'image/{self.prompt[idx]}', img[idx], self.effective_iter)
self._depth2image()
self._image2depth()
accumulated_loss = self.train_metrics.result()["loss"]
rgb_loss = self.train_metrics.result()["rgb_loss"]
depth_loss = self.train_metrics.result()["depth_loss"]
tb_logger.log_dic(
{
f"train/{k}": v
for k, v in self.train_metrics.result().items()
},
global_step=self.effective_iter,
)
tb_logger.writer.add_scalar(
"lr",
self.lr_scheduler.get_last_lr()[0],
global_step=self.effective_iter,
)
tb_logger.writer.add_scalar(
"n_batch_in_epoch",
self.n_batch_in_epoch,
global_step=self.effective_iter,
)
logging.info(
f"iter {self.effective_iter:5d} (epoch {epoch:2d}): loss={accumulated_loss:.5f}, rgb_loss={rgb_loss:.5f}, depth_loss={depth_loss:.5f}"
)
accelerator.wait_for_everyone()
if self.save_period > 0 and 0 == self.effective_iter % self.save_period:
accelerator.save_state(output_dir=os.path.join(self.out_dir_ckpt, 'latest'))
unwrapped_model = accelerator.unwrap_model(self.model)
if accelerator.is_main_process:
accelerator.save_model(unwrapped_model.unet,
os.path.join(self.out_dir_ckpt, 'latest'), safe_serialization=False)
self.save_miscs('latest')
# RGB-D joint generation
generator = torch.Generator(self.model.device).manual_seed(1024)
img = self.model.generate_rgbd(self.prompt, num_inference_steps=50, generator=generator, show_pbar=False, height=64, width=64)
for idx in range(len(self.prompt)):
tb_logger.writer.add_image(f'image/{self.prompt[idx]}', img[idx], self.effective_iter)
# depth to RGB generation
self._depth2image()
# # RGB to depth generation
self._image2depth()
accelerator.wait_for_everyone()
if self.backup_period > 0 and 0 == self.effective_iter % self.backup_period:
unwrapped_model = accelerator.unwrap_model(self.model)
if accelerator.is_main_process:
unwrapped_model.unet.save_pretrained(
os.path.join(self.out_dir_ckpt, self._get_backup_ckpt_name()))
accelerator.wait_for_everyone()
if self.val_period > 0 and 0 == self.effective_iter % self.val_period:
self.validate()
# End of training
if self.max_iter > 0 and self.effective_iter >= self.max_iter:
unwrapped_model = accelerator.unwrap_model(self.model)
if accelerator.is_main_process:
unwrapped_model.unet.save_pretrained(
os.path.join(self.out_dir_ckpt, self._get_backup_ckpt_name()))
accelerator.wait_for_everyone()
return
torch.cuda.empty_cache()
# <<< Effective batch end <<<
# Epoch end
self.n_batch_in_epoch = 0
def _image2depth(self):
generator = torch.Generator(self.model.device).manual_seed(1024)
image2dept_paths = ['/home/aiops/wangzh/data/scannet/scene0593_00/color/000100.jpg',
'/home/aiops/wangzh/data/scannet/scene0593_00/color/000700.jpg',
'/home/aiops/wangzh/data/scannet/scene0591_01/color/000600.jpg',
'/home/aiops/wangzh/data/scannet/scene0591_01/color/001500.jpg']
for img_idx, image_path in enumerate(image2dept_paths):
rgb_input = Image.open(image_path)
depth_pred: MarigoldDepthOutput = self.model.image2depth(
rgb_input,
denoising_steps=self.cfg.validation.denoising_steps,
ensemble_size=self.cfg.validation.ensemble_size,
processing_res=self.cfg.validation.processing_res,
match_input_res=self.cfg.validation.match_input_res,
generator=generator,
batch_size=self.cfg.validation.ensemble_size,
# use batch size 1 to increase reproducibility
color_map="Spectral",
show_progress_bar=False,
resample_method=self.cfg.validation.resample_method,
)
img = self.model.post_process_rgbd(['None'], [rgb_input], [depth_pred['depth_colored']])
tb_logger.writer.add_image(f'image2depth_{img_idx}', img[0], self.effective_iter)
def _depth2image(self):
generator = torch.Generator(self.model.device).manual_seed(1024)
if "least_square_disparity" == self.cfg.eval.alignment:
depth2image_path = ['/home/aiops/wangzh/data/ori_depth_part0-0/sa_10000335.jpg',
'/home/aiops/wangzh/data/ori_depth_part0-0/sa_3572319.jpg',
'/home/aiops/wangzh/data/ori_depth_part0-0/sa_457934.jpg']
else:
depth2image_path = ['/home/aiops/wangzh/data/sa_001000/sa_10000335.jpg',
'/home/aiops/wangzh/data/sa_000357/sa_3572319.jpg',
'/home/aiops/wangzh/data/sa_000045/sa_457934.jpg']
prompts = ['Red car parked in the factory',
'White gothic church with cemetery next to it',
'House with red roof and starry sky in the background']
for img_idx, depth_path in enumerate(depth2image_path):
depth_input = Image.open(depth_path)
image_pred = self.model.single_depth2image(
depth_input,
prompts[img_idx],
num_inference_steps=50,
processing_res=self.cfg.validation.processing_res,
generator=generator,
show_pbar=False,
resample_method=self.cfg.validation.resample_method,
)
img = self.model.post_process_rgbd([prompts[img_idx]], [image_pred], [depth_input])
tb_logger.writer.add_image(f'depth2image_{img_idx}', img[0], self.effective_iter)
def encode_depth(self, depth_in):
# stack depth into 3-channel
stacked = self.stack_depth_images(depth_in)
# encode using VAE encoder
depth_latent = self.model.encode_rgb(stacked)
return depth_latent
@staticmethod
def stack_depth_images(depth_in):
if 4 == len(depth_in.shape):
stacked = depth_in.repeat(1, 3, 1, 1)
elif 3 == len(depth_in.shape):
stacked = depth_in.unsqueeze(1)
stacked = stacked.repeat(1, 3, 1, 1)
return stacked
def validate(self):
for i, val_loader in enumerate(self.val_loaders):
val_dataset_name = val_loader.dataset.disp_name
val_metric_dic = self.validate_single_dataset(
data_loader=val_loader, metric_tracker=self.val_metrics
)
if self.accelerator.is_main_process:
val_metric_dic = {k:torch.tensor(v).cuda() for k,v in val_metric_dic.items()}
tb_logger.log_dic(
{f"val/{val_dataset_name}/{k}": v for k, v in val_metric_dic.items()},
global_step=self.effective_iter,
)
# save to file
eval_text = eval_dic_to_text(
val_metrics=val_metric_dic,
dataset_name=val_dataset_name,
sample_list_path=val_loader.dataset.filename_ls_path,
)
_save_to = os.path.join(
self.out_dir_eval,
f"eval-{val_dataset_name}-iter{self.effective_iter:06d}.txt",
)
with open(_save_to, "w+") as f:
f.write(eval_text)
# Update main eval metric
if 0 == i:
main_eval_metric = val_metric_dic[self.main_val_metric]
if (
"minimize" == self.main_val_metric_goal
and main_eval_metric < self.best_metric
or "maximize" == self.main_val_metric_goal
and main_eval_metric > self.best_metric
):
self.best_metric = main_eval_metric
logging.info(
f"Best metric: {self.main_val_metric} = {self.best_metric} at iteration {self.effective_iter}"
)
# Save a checkpoint
self.save_checkpoint(
ckpt_name='best', save_train_state=False
)
self.accelerator.wait_for_everyone()
def visualize(self):
for val_loader in self.vis_loaders:
vis_dataset_name = val_loader.dataset.disp_name
vis_out_dir = os.path.join(
self.out_dir_vis, self._get_backup_ckpt_name(), vis_dataset_name
)
os.makedirs(vis_out_dir, exist_ok=True)
_ = self.validate_single_dataset(
data_loader=val_loader,
metric_tracker=self.val_metrics,
save_to_dir=vis_out_dir,
)
@torch.no_grad()
def validate_single_dataset(
self,
data_loader: DataLoader,
metric_tracker: MetricTracker,
save_to_dir: str = None,
):
self.model.to(self.device)
metric_tracker.reset()
# Generate seed sequence for consistent evaluation
val_init_seed = self.cfg.validation.init_seed
val_seed_ls = generate_seed_sequence(val_init_seed, len(data_loader))
for i, batch in enumerate(
tqdm(data_loader, desc=f"evaluating on {data_loader.dataset.disp_name}"),
start=1,
):
rgb_int = batch["rgb_int"] # [3, H, W]
# GT depth
depth_raw_ts = batch["depth_raw_linear"].squeeze()
depth_raw = depth_raw_ts.cpu().numpy()
depth_raw_ts = depth_raw_ts.to(self.device)
valid_mask_ts = batch["valid_mask_raw"].squeeze()
valid_mask = valid_mask_ts.cpu().numpy()
valid_mask_ts = valid_mask_ts.to(self.device)
# Random number generator
seed = val_seed_ls.pop()
if seed is None:
generator = None
else:
generator = torch.Generator(device=self.device)
generator.manual_seed(seed)
# Predict depth
pipe_out: MarigoldDepthOutput = self.model.image2depth(
rgb_int,
denoising_steps=self.cfg.validation.denoising_steps,
ensemble_size=self.cfg.validation.ensemble_size,
processing_res=self.cfg.validation.processing_res,
match_input_res=self.cfg.validation.match_input_res,
generator=generator,
batch_size=self.cfg.validation.ensemble_size, # use batch size 1 to increase reproducibility
color_map=None,
show_progress_bar=False,
resample_method=self.cfg.validation.resample_method,
)
depth_pred: np.ndarray = pipe_out.depth_np
if "least_square" == self.cfg.eval.alignment:
depth_pred, scale, shift = align_depth_least_square(
gt_arr=depth_raw,
pred_arr=depth_pred,
valid_mask_arr=valid_mask,
return_scale_shift=True,
max_resolution=self.cfg.eval.align_max_res,
)
elif "least_square_disparity" == self.cfg.eval.alignment:
# convert GT depth -> GT disparity
gt_disparity, gt_non_neg_mask = depth2disparity(
depth=depth_raw, return_mask=True
)
pred_non_neg_mask = depth_pred > 0
valid_nonnegative_mask = valid_mask & gt_non_neg_mask & pred_non_neg_mask
disparity_pred, scale, shift = align_depth_least_square(
gt_arr=gt_disparity,
pred_arr=depth_pred,
valid_mask_arr=valid_nonnegative_mask,
return_scale_shift=True,
max_resolution=self.cfg.eval.align_max_res,
)
# convert to depth
disparity_pred = np.clip(
disparity_pred, a_min=1e-3, a_max=None
) # avoid 0 disparity
depth_pred = disparity2depth(disparity_pred)
# Clip to dataset min max
depth_pred = np.clip(
depth_pred,
a_min=data_loader.dataset.min_depth,
a_max=data_loader.dataset.max_depth,
)
# clip to d > 0 for evaluation
depth_pred = np.clip(depth_pred, a_min=1e-6, a_max=None)
# Evaluate
sample_metric = []
depth_pred_ts = torch.from_numpy(depth_pred).to(self.device)
for met_func in self.metric_funcs:
_metric_name = met_func.__name__
_metric = met_func(depth_pred_ts, depth_raw_ts, valid_mask_ts).cuda(self.accelerator.process_index)
self.accelerator.wait_for_everyone()
_metric = self.accelerator.gather_for_metrics(_metric.unsqueeze(0)).mean().item()
sample_metric.append(_metric.__str__())
metric_tracker.update(_metric_name, _metric)
self.accelerator.wait_for_everyone()
# Save as 16-bit uint png
if save_to_dir is not None:
img_name = batch["rgb_relative_path"][0].replace("/", "_")
png_save_path = os.path.join(save_to_dir, f"{img_name}.png")
depth_to_save = (pipe_out.depth_np * 65535.0).astype(np.uint16)
Image.fromarray(depth_to_save).save(png_save_path, mode="I;16")
return metric_tracker.result()
def _get_next_seed(self):
if 0 == len(self.global_seed_sequence):
self.global_seed_sequence = generate_seed_sequence(
initial_seed=self.seed,
length=self.max_iter * self.gradient_accumulation_steps,
)
logging.info(
f"Global seed sequence is generated, length={len(self.global_seed_sequence)}"
)
return self.global_seed_sequence.pop()
def save_miscs(self, ckpt_name):
ckpt_dir = os.path.join(self.out_dir_ckpt, ckpt_name)
state = {
"config": self.cfg,
"effective_iter": self.effective_iter,
"epoch": self.epoch,
"n_batch_in_epoch": self.n_batch_in_epoch,
"best_metric": self.best_metric,
"in_evaluation": self.in_evaluation,
"global_seed_sequence": self.global_seed_sequence,
}
train_state_path = os.path.join(ckpt_dir, "trainer.ckpt")
torch.save(state, train_state_path)
logging.info(f"Misc state is saved to: {train_state_path}")
def load_miscs(self, ckpt_path):
checkpoint = torch.load(os.path.join(ckpt_path, "trainer.ckpt"))
self.effective_iter = checkpoint["effective_iter"]
self.epoch = checkpoint["epoch"]
self.n_batch_in_epoch = checkpoint["n_batch_in_epoch"]
self.in_evaluation = checkpoint["in_evaluation"]
self.global_seed_sequence = checkpoint["global_seed_sequence"]
self.best_metric = checkpoint["best_metric"]
logging.info(f"Misc state is loaded from {ckpt_path}")
def save_checkpoint(self, ckpt_name, save_train_state):
ckpt_dir = os.path.join(self.out_dir_ckpt, ckpt_name)
logging.info(f"Saving checkpoint to: {ckpt_dir}")
# Backup previous checkpoint
temp_ckpt_dir = None
if os.path.exists(ckpt_dir) and os.path.isdir(ckpt_dir):
temp_ckpt_dir = os.path.join(
os.path.dirname(ckpt_dir), f"_old_{os.path.basename(ckpt_dir)}"
)
if os.path.exists(temp_ckpt_dir):
shutil.rmtree(temp_ckpt_dir, ignore_errors=True)
os.rename(ckpt_dir, temp_ckpt_dir)
logging.debug(f"Old checkpoint is backed up at: {temp_ckpt_dir}")
# Save UNet
unet_path = os.path.join(ckpt_dir, "unet")
self.model.unet.save_pretrained(unet_path, safe_serialization=False)
logging.info(f"UNet is saved to: {unet_path}")
if save_train_state:
state = {
"config": self.cfg,
"effective_iter": self.effective_iter,
"epoch": self.epoch,
"n_batch_in_epoch": self.n_batch_in_epoch,
"best_metric": self.best_metric,
"in_evaluation": self.in_evaluation,
"global_seed_sequence": self.global_seed_sequence,
}
train_state_path = os.path.join(ckpt_dir, "trainer.ckpt")
torch.save(state, train_state_path)
# iteration indicator
f = open(os.path.join(ckpt_dir, self._get_backup_ckpt_name()), "w")
f.close()
logging.info(f"Trainer state is saved to: {train_state_path}")
# Remove temp ckpt
if temp_ckpt_dir is not None and os.path.exists(temp_ckpt_dir):
shutil.rmtree(temp_ckpt_dir, ignore_errors=True)
logging.debug("Old checkpoint backup is removed.")
def load_checkpoint(
self, ckpt_path, load_trainer_state=True, resume_lr_scheduler=True
):
logging.info(f"Loading checkpoint from: {ckpt_path}")
# Load UNet
_model_path = os.path.join(ckpt_path, "unet", "diffusion_pytorch_model.bin")
self.model.unet.load_state_dict(
torch.load(_model_path, map_location=self.device)
)
self.model.unet.to(self.device)
logging.info(f"UNet parameters are loaded from {_model_path}")
# Load training states
if load_trainer_state:
checkpoint = torch.load(os.path.join(ckpt_path, "trainer.ckpt"))
self.effective_iter = checkpoint["effective_iter"]
self.epoch = checkpoint["epoch"]
self.n_batch_in_epoch = checkpoint["n_batch_in_epoch"]
self.in_evaluation = checkpoint["in_evaluation"]
self.global_seed_sequence = checkpoint["global_seed_sequence"]
self.best_metric = checkpoint["best_metric"]
self.optimizer.load_state_dict(checkpoint["optimizer"])
logging.info(f"optimizer state is loaded from {ckpt_path}")
if resume_lr_scheduler:
self.lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
logging.info(f"LR scheduler state is loaded from {ckpt_path}")
logging.info(
f"Checkpoint loaded from: {ckpt_path}. Resume from iteration {self.effective_iter} (epoch {self.epoch})"
)
return
def _get_backup_ckpt_name(self):
return f"iter_{self.effective_iter:06d}"