# Last modified: 2024-02-08 | |
# | |
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------------------------- | |
# If you find this code useful, we kindly ask you to cite our paper in your work. | |
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation | |
# If you use or adapt this code, please attribute to https://github.com/prs-eth/marigold. | |
# More information about the method can be found at https://marigoldmonodepth.github.io | |
# -------------------------------------------------------------------------- | |
from .base_depth_dataset import BaseDepthDataset, DepthFileNameMode | |
import torch | |
from torchvision.transforms import InterpolationMode, Resize, CenterCrop | |
import torchvision.transforms as transforms | |
class DepthAnythingDataset(BaseDepthDataset): | |
def __init__( | |
self, | |
**kwargs, | |
) -> None: | |
super().__init__( | |
# ScanNet data parameter | |
min_depth=-1, | |
max_depth=256, | |
has_filled_depth=False, | |
name_mode=DepthFileNameMode.id, | |
**kwargs, | |
) | |
def _read_depth_file(self, rel_path): | |
depth_in = self._read_image(rel_path) | |
# Decode ScanNet depth | |
# depth_decoded = depth_in / 1000.0 | |
return depth_in | |
def _training_preprocess(self, rasters): | |
# Augmentation | |
if self.augm_args is not None: | |
rasters = self._augment_data(rasters) | |
# Normalization | |
rasters["depth_raw_norm"] = rasters["depth_raw_linear"] / 255.0 * 2.0 - 1.0 | |
rasters["depth_filled_norm"] = rasters["depth_filled_linear"] / 255.0 * 2.0 - 1.0 | |
# Set invalid pixel to far plane | |
if self.move_invalid_to_far_plane: | |
if self.depth_transform.far_plane_at_max: | |
rasters["depth_filled_norm"][~rasters["valid_mask_filled"]] = ( | |
self.depth_transform.norm_max | |
) | |
else: | |
rasters["depth_filled_norm"][~rasters["valid_mask_filled"]] = ( | |
self.depth_transform.norm_min | |
) | |
# Resize | |
if self.resize_to_hw is not None: | |
T = transforms.Compose([ | |
Resize(self.resize_to_hw[0]), | |
CenterCrop(self.resize_to_hw), | |
]) | |
rasters = {k: T(v) for k, v in rasters.items()} | |
return rasters | |
# def _load_depth_data(self, depth_rel_path, filled_rel_path): | |
# # Read depth data | |
# outputs = {} | |
# depth_raw = self._read_depth_file(depth_rel_path).squeeze() | |
# depth_raw_linear = torch.from_numpy(depth_raw).float().unsqueeze(0) # [1, H, W] [0, 255] | |
# outputs["depth_raw_linear"] = depth_raw_linear.clone() | |
# | |
# if self.has_filled_depth: | |
# depth_filled = self._read_depth_file(filled_rel_path).squeeze() | |
# depth_filled_linear = torch.from_numpy(depth_filled).float().unsqueeze(0) | |
# outputs["depth_filled_linear"] = depth_filled_linear | |
# else: | |
# outputs["depth_filled_linear"] = depth_raw_linear.clone() | |
# | |
# return outputs |