|
|
|
|
|
import cv2 |
|
import glob |
|
import numpy |
|
import os |
|
import skimage |
|
import skimage.metrics |
|
import sys |
|
import torch |
|
|
|
import run |
|
|
|
|
|
|
|
run.args_strModel = 'l1' |
|
|
|
|
|
|
|
os.makedirs(name='./netflix', exist_ok=True) |
|
|
|
if len(glob.glob('./netflix/BoxingPractice-*.png')) != 100: |
|
os.system('ffmpeg -i https://media.xiph.org/video/derf/ElFuente/Netflix_BoxingPractice_4096x2160_60fps_10bit_420.y4m -pix_fmt rgb24 -vframes 100 ./netflix/BoxingPractice-%03d.png') |
|
|
|
|
|
if len(glob.glob('./netflix/Crosswalk-*.png')) != 100: |
|
os.system('ffmpeg -i https://media.xiph.org/video/derf/ElFuente/Netflix_Crosswalk_4096x2160_60fps_10bit_420.y4m -pix_fmt rgb24 -vframes 100 ./netflix/Crosswalk-%03d.png') |
|
|
|
|
|
if len(glob.glob('./netflix/DrivingPOV-*.png')) != 100: |
|
os.system('ffmpeg -i https://media.xiph.org/video/derf/Chimera/Netflix_DrivingPOV_4096x2160_60fps_10bit_420.y4m -pix_fmt rgb24 -vframes 100 ./netflix/DrivingPOV-%03d.png') |
|
|
|
|
|
if len(glob.glob('./netflix/FoodMarket-*.png')) != 100: |
|
os.system('ffmpeg -i https://media.xiph.org/video/derf/ElFuente/Netflix_FoodMarket_4096x2160_60fps_10bit_420.y4m -pix_fmt rgb24 -vframes 100 ./netflix/FoodMarket-%03d.png') |
|
|
|
|
|
if len(glob.glob('./netflix/FoodMarket2-*.png')) != 100: |
|
os.system('ffmpeg -i https://media.xiph.org/video/derf/ElFuente/Netflix_FoodMarket2_4096x2160_60fps_10bit_420.y4m -pix_fmt rgb24 -vframes 100 ./netflix/FoodMarket2-%03d.png') |
|
|
|
|
|
if len(glob.glob('./netflix/RitualDance-*.png')) != 100: |
|
os.system('ffmpeg -i https://media.xiph.org/video/derf/ElFuente/Netflix_RitualDance_4096x2160_60fps_10bit_420.y4m -pix_fmt rgb24 -vframes 100 ./netflix/RitualDance-%03d.png') |
|
|
|
|
|
if len(glob.glob('./netflix/SquareAndTimelapse-*.png')) != 100: |
|
os.system('ffmpeg -i https://media.xiph.org/video/derf/ElFuente/Netflix_SquareAndTimelapse_4096x2160_60fps_10bit_420.y4m -pix_fmt rgb24 -vframes 100 ./netflix/SquareAndTimelapse-%03d.png') |
|
|
|
|
|
if len(glob.glob('./netflix/Tango-*.png')) != 100: |
|
os.system('ffmpeg -i https://media.xiph.org/video/derf/ElFuente/Netflix_Tango_4096x2160_60fps_10bit_420.y4m -pix_fmt rgb24 -vframes 100 ./netflix/Tango-%03d.png') |
|
|
|
|
|
|
|
|
|
for strCategory in ['resized', 'cropped']: |
|
fltPsnr = [] |
|
fltSsim = [] |
|
|
|
for strFile in ['BoxingPractice', 'Crosswalk', 'DrivingPOV', 'FoodMarket', 'FoodMarket2', 'RitualDance', 'SquareAndTimelapse', 'Tango']: |
|
for intFrame in range(2, 99, 2): |
|
npyOne = cv2.imread(filename='./netflix/' + strFile + '-' + str(intFrame - 1).zfill(3) + '.png', flags=-1) |
|
npyTwo = cv2.imread(filename='./netflix/' + strFile + '-' + str(intFrame + 1).zfill(3) + '.png', flags=-1) |
|
npyTruth = cv2.imread(filename='./netflix/' + strFile + '-' + str(intFrame).zfill(3) + '.png', flags=-1) |
|
|
|
if strCategory == 'resized': |
|
npyOne = cv2.resize(src=npyOne, dsize=(2048, 1080), fx=0.0, fy=0.0, interpolation=cv2.INTER_AREA) |
|
npyTwo = cv2.resize(src=npyTwo, dsize=(2048, 1080), fx=0.0, fy=0.0, interpolation=cv2.INTER_AREA) |
|
npyTruth = cv2.resize(src=npyTruth, dsize=(2048, 1080), fx=0.0, fy=0.0, interpolation=cv2.INTER_AREA) |
|
|
|
elif strCategory == 'cropped': |
|
npyOne = npyOne[540:-540, 1024:-1024, :] |
|
npyTwo = npyTwo[540:-540, 1024:-1024, :] |
|
npyTruth = npyTruth[540:-540, 1024:-1024, :] |
|
|
|
|
|
|
|
tenOne = torch.FloatTensor(numpy.ascontiguousarray(npyOne.transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))) |
|
tenTwo = torch.FloatTensor(numpy.ascontiguousarray(npyTwo.transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))) |
|
|
|
npyEstimate = (run.estimate(tenOne, tenTwo, [0.5])[0].clip(0.0, 1.0).numpy().transpose(1, 2, 0) * 255.0).round().astype(numpy.uint8) |
|
|
|
fltPsnr.append(skimage.metrics.peak_signal_noise_ratio(image_true=npyTruth, image_test=npyEstimate, data_range=255)) |
|
fltSsim.append(skimage.metrics.structural_similarity(im1=npyTruth, im2=npyEstimate, data_range=255, channel_axis=2)) |
|
|
|
|
|
|
|
print('category', strCategory) |
|
print('computed average psnr', numpy.mean(fltPsnr)) |
|
print('computed average ssim', numpy.mean(fltSsim)) |
|
|
|
|