File size: 44,245 Bytes
864ec44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 |
# An official reimplemented version of Marigold training script.
# Last modified: 2024-04-29
#
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# If you use or adapt this code, please attribute to https://github.com/prs-eth/marigold.
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import logging
import os
import pdb
import shutil
from datetime import datetime
from typing import List, Union
import safetensors
import numpy as np
import torch
from diffusers import DDPMScheduler
from omegaconf import OmegaConf
from torch.nn import Conv2d
from torch.nn.parameter import Parameter
from torch.optim import Adam
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from tqdm import tqdm
from PIL import Image
# import torch.optim.lr_scheduler
from marigold.marigold_pipeline import MarigoldPipeline, MarigoldDepthOutput
from src.util import metric
from src.util.data_loader import skip_first_batches
from src.util.logging_util import tb_logger, eval_dic_to_text
from src.util.loss import get_loss
from src.util.lr_scheduler import IterExponential
from src.util.metric import MetricTracker
from src.util.multi_res_noise import multi_res_noise_like
from src.util.alignment import align_depth_least_square
from src.util.seeding import generate_seed_sequence
from accelerate import Accelerator
import random
class MarigoldXLTrainer:
def __init__(
self,
cfg: OmegaConf,
model: MarigoldPipeline,
train_dataloader: DataLoader,
device,
base_ckpt_dir,
out_dir_ckpt,
out_dir_eval,
out_dir_vis,
accumulation_steps: int,
separate_list: List = None,
val_dataloaders: List[DataLoader] = None,
vis_dataloaders: List[DataLoader] = None,
timestep_method: str = 'unidiffuser'
):
self.cfg: OmegaConf = cfg
self.model: MarigoldPipeline = model
self.device = device
self.seed: Union[int, None] = (
self.cfg.trainer.init_seed
) # used to generate seed sequence, set to `None` to train w/o seeding
self.out_dir_ckpt = out_dir_ckpt
self.out_dir_eval = out_dir_eval
self.out_dir_vis = out_dir_vis
self.train_loader: DataLoader = train_dataloader
self.val_loaders: List[DataLoader] = val_dataloaders
self.vis_loaders: List[DataLoader] = vis_dataloaders
self.accumulation_steps: int = accumulation_steps
self.separate_list = separate_list
self.timestep_method = timestep_method
# Adapt input layers
# if 8 != self.model.unet.config["in_channels"]:
# self._replace_unet_conv_in()
# if 8 != self.model.unet.config["out_channels"]:
# self._replace_unet_conv_out()
self.prompt = ['a view of a city skyline from a bridge',
'a man and a woman sitting on a couch',
'a black car parked in a parking lot next to the water',
'Enchanted forest with glowing plants, fairies, and ancient castle.',
'Futuristic city with skyscrapers, neon lights, and hovering vehicles.',
'Fantasy mountain landscape with waterfalls, dragons, and mythical creatures.']
# self.generator = torch.Generator('cuda:0').manual_seed(1024)
# Encode empty text prompt
# self.model.encode_empty_text()
# self.empty_text_embed = self.model.empty_text_embed.detach().clone().to(device)
self.model.unet.enable_xformers_memory_efficient_attention()
# Trainability
self.model.vae.requires_grad_(False)
self.model.text_encoder.requires_grad_(False)
# self.model.unet.requires_grad_(True)
grad_part = filter(lambda p: p.requires_grad, self.model.unet.parameters())
# Optimizer !should be defined after input layer is adapted
lr = self.cfg.lr
self.optimizer = Adam(grad_part, lr=lr)
total_params = sum(p.numel() for p in self.model.unet.parameters())
total_params_m = total_params / 1_000_000
print(f"Total parameters: {total_params_m:.2f}M")
trainable_params = sum(p.numel() for p in self.model.unet.parameters() if p.requires_grad)
trainable_params_m = trainable_params / 1_000_000
print(f"Trainable parameters: {trainable_params_m:.2f}M")
# LR scheduler
lr_func = IterExponential(
total_iter_length=self.cfg.lr_scheduler.kwargs.total_iter,
final_ratio=self.cfg.lr_scheduler.kwargs.final_ratio,
warmup_steps=self.cfg.lr_scheduler.kwargs.warmup_steps,
)
self.lr_scheduler = LambdaLR(optimizer=self.optimizer, lr_lambda=lr_func)
# Loss
self.loss = get_loss(loss_name=self.cfg.loss.name, **self.cfg.loss.kwargs)
# Training noise scheduler
self.training_noise_scheduler: DDPMScheduler = DDPMScheduler.from_pretrained(
os.path.join(
cfg.trainer.training_noise_scheduler.pretrained_path,
"scheduler",
)
)
self.prediction_type = self.training_noise_scheduler.config.prediction_type
assert (
self.prediction_type == self.model.scheduler.config.prediction_type
), "Different prediction types"
self.scheduler_timesteps = (
self.training_noise_scheduler.config.num_train_timesteps
)
# Eval metrics
self.metric_funcs = [getattr(metric, _met) for _met in cfg.eval.eval_metrics]
self.train_metrics = MetricTracker(*["loss", 'rgb_loss', 'depth_loss'])
self.val_metrics = MetricTracker(*[m.__name__ for m in self.metric_funcs])
# main metric for best checkpoint saving
self.main_val_metric = cfg.validation.main_val_metric
self.main_val_metric_goal = cfg.validation.main_val_metric_goal
assert (
self.main_val_metric in cfg.eval.eval_metrics
), f"Main eval metric `{self.main_val_metric}` not found in evaluation metrics."
self.best_metric = 1e8 if "minimize" == self.main_val_metric_goal else -1e8
# Settings
self.max_epoch = self.cfg.max_epoch
self.max_iter = self.cfg.max_iter
self.gradient_accumulation_steps = accumulation_steps
self.gt_depth_type = self.cfg.gt_depth_type
self.gt_mask_type = self.cfg.gt_mask_type
self.save_period = self.cfg.trainer.save_period
self.backup_period = self.cfg.trainer.backup_period
self.val_period = self.cfg.trainer.validation_period
self.vis_period = self.cfg.trainer.visualization_period
# Multi-resolution noise
self.apply_multi_res_noise = self.cfg.multi_res_noise is not None
if self.apply_multi_res_noise:
self.mr_noise_strength = self.cfg.multi_res_noise.strength
self.annealed_mr_noise = self.cfg.multi_res_noise.annealed
self.mr_noise_downscale_strategy = (
self.cfg.multi_res_noise.downscale_strategy
)
# Internal variables
self.epoch = 0
self.n_batch_in_epoch = 0 # batch index in the epoch, used when resume training
self.effective_iter = 0 # how many times optimizer.step() is called
self.in_evaluation = False
self.global_seed_sequence: List = [] # consistent global seed sequence, used to seed random generator, to ensure consistency when resuming
def _replace_unet_conv_in(self):
# replace the first layer to accept 8 in_channels
_weight = self.model.unet.conv_in.weight.clone() # [320, 4, 3, 3]
_bias = self.model.unet.conv_in.bias.clone() # [320]
zero_weight = torch.zeros(_weight.shape).to(_weight.device)
_weight = torch.cat([_weight, zero_weight], dim=1)
# _weight = _weight.repeat((1, 2, 1, 1)) # Keep selected channel(s)
# half the activation magnitude
# _weight *= 0.5
# new conv_in channel
_n_convin_out_channel = self.model.unet.conv_in.out_channels
_new_conv_in = Conv2d(
8, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
_new_conv_in.weight = Parameter(_weight)
_new_conv_in.bias = Parameter(_bias)
self.model.unet.conv_in = _new_conv_in
logging.info("Unet conv_in layer is replaced")
# replace config
self.model.unet.config["in_channels"] = 8
logging.info("Unet config is updated")
return
def _replace_unet_conv_out(self):
# replace the first layer to accept 8 in_channels
_weight = self.model.unet.conv_out.weight.clone() # [8, 320, 3, 3]
_bias = self.model.unet.conv_out.bias.clone() # [320]
_weight = _weight.repeat((2, 1, 1, 1)) # Keep selected channel(s)
_bias = _bias.repeat((2))
# half the activation magnitude
# new conv_in channel
_n_convin_out_channel = self.model.unet.conv_out.out_channels
_new_conv_out = Conv2d(
_n_convin_out_channel, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
_new_conv_out.weight = Parameter(_weight)
_new_conv_out.bias = Parameter(_bias)
self.model.unet.conv_out = _new_conv_out
logging.info("Unet conv_out layer is replaced")
# replace config
self.model.unet.config["out_channels"] = 8
logging.info("Unet config is updated")
return
def parallel_train(self, t_end=None, accelerator=None):
logging.info("Start training")
self.model, self.optimizer, self.train_loader, self.lr_scheduler = accelerator.prepare(
self.model, self.optimizer, self.train_loader, self.lr_scheduler
)
self.accelerator = accelerator
if self.val_loaders is not None:
for idx, loader in enumerate(self.val_loaders):
self.val_loaders[idx] = accelerator.prepare(loader)
if os.path.exists(os.path.join(self.out_dir_ckpt, 'latest')):
accelerator.load_state(os.path.join(self.out_dir_ckpt, 'latest'))
self.load_miscs(os.path.join(self.out_dir_ckpt, 'latest'))
self.train_metrics.reset()
accumulated_step = 0
for epoch in range(self.epoch, self.max_epoch + 1):
self.epoch = epoch
logging.debug(f"epoch: {self.epoch}")
# Skip previous batches when resume
for batch in skip_first_batches(self.train_loader, self.n_batch_in_epoch):
self.model.unet.train()
# globally consistent random generators
if self.seed is not None:
local_seed = self._get_next_seed()
rand_num_generator = torch.Generator(device=self.model.device)
rand_num_generator.manual_seed(local_seed)
else:
rand_num_generator = None
# >>> With gradient accumulation >>>
# Get data
rgb = batch["rgb_norm"].to(self.model.device)
depth_gt_for_latent = batch[self.gt_depth_type].to(self.model.device)
batch_size = rgb.shape[0]
if self.gt_mask_type is not None:
valid_mask_for_latent = batch[self.gt_mask_type].to(self.model.device)
invalid_mask = ~valid_mask_for_latent
valid_mask_down = ~torch.max_pool2d(
invalid_mask.float(), 8, 8
).bool()
valid_mask_down = valid_mask_down.repeat((1, 4, 1, 1))
with torch.no_grad():
# Encode image
rgb_latent = self.model.encode_rgb(rgb) # [B, 4, h, w]
# Encode GT depth
gt_depth_latent = self.encode_depth(
depth_gt_for_latent
) # [B, 4, h, w]
# Sample a random timestep for each image
if self.cfg.loss.depth_factor == 1:
rgb_timesteps = torch.zeros(
(batch_size),
device=self.model.device
).long() # [B]
depth_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
elif self.timestep_method == 'unidiffuser':
rgb_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
depth_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
elif self.timestep_method == 'partition':
rand_num = random.random()
if rand_num < 0.3333:
# joint generation
rgb_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
depth_timesteps = rgb_timesteps
elif rand_num < 0.6666:
# image2depth generation
rgb_timesteps = torch.zeros(
(batch_size),
device=self.model.device
).long() # [B]
depth_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
else:
# depth2image generation
rgb_timesteps = torch.randint(
0,
self.scheduler_timesteps,
(batch_size,),
device=self.model.device,
generator=rand_num_generator,
).long() # [B]
depth_timesteps = torch.zeros(
(batch_size),
device=self.model.device
).long() # [B]
# Sample noise
if self.apply_multi_res_noise:
rgb_strength = self.mr_noise_strength
if self.annealed_mr_noise:
# calculate strength depending on t
rgb_strength = rgb_strength * (rgb_timesteps / self.scheduler_timesteps)
rgb_noise = multi_res_noise_like(
rgb_latent,
strength=rgb_strength,
downscale_strategy=self.mr_noise_downscale_strategy,
generator=rand_num_generator,
device=self.model.device,
)
depth_strength = self.mr_noise_strength
if self.annealed_mr_noise:
# calculate strength depending on t
depth_strength = depth_strength * (depth_timesteps / self.scheduler_timesteps)
depth_noise = multi_res_noise_like(
gt_depth_latent,
strength=depth_strength,
downscale_strategy=self.mr_noise_downscale_strategy,
generator=rand_num_generator,
device=self.model.device,
)
else:
rgb_noise = torch.randn(
rgb_latent.shape,
device=self.model.device,
generator=rand_num_generator,
) # [B, 8, h, w]
depth_noise = torch.randn(
gt_depth_latent.shape,
device=self.model.device,
generator=rand_num_generator,
) # [B, 8, h, w]
# Add noise to the latents (diffusion forward process)
noisy_rgb_latents = self.training_noise_scheduler.add_noise(
rgb_latent, rgb_noise, rgb_timesteps
) # [B, 4, h, w]
noisy_depth_latents = self.training_noise_scheduler.add_noise(
gt_depth_latent, depth_noise, depth_timesteps
) # [B, 4, h, w]
noisy_latents = torch.cat(
[noisy_rgb_latents, noisy_depth_latents], dim=1
).float() # [B, 8, h, w]
# Text embedding
batch_text_embed = []
batch_pooled_text_embed = []
for p in batch['text']:
prompt_embed, pooled_prompt_embed = self.model.encode_text(p)
batch_text_embed.append(prompt_embed)
batch_pooled_text_embed.append(pooled_prompt_embed)
batch_text_embed = torch.cat(batch_text_embed, dim=0)
batch_pooled_text_embed = torch.cat(batch_pooled_text_embed, dim=0)
# input_ids = {k:v.squeeze().to(self.model.device) for k,v in batch['text'].items()}
# prompt_embed, pooled_prompt_embed = self.model.encode_text(batch['text'])
# text_embed = self.empty_text_embed.to(device).repeat(
# (batch_size, 1, 1)
# ) # [B, 77, 1024]
# Predict the noise residual
add_time_ids = self.model._get_add_time_ids(
(batch['rgb_int'].shape[-2], batch['rgb_int'].shape[-1]), (0, 0), (batch['rgb_int'].shape[-2], batch['rgb_int'].shape[-1]), dtype=batch_text_embed.dtype
)
pdb.set_trace()
dtype = self.model.unet.dtype
added_cond_kwargs = {"text_embeds": batch_pooled_text_embed.to(self.model.device).to(dtype), "time_ids": add_time_ids.to(self.model.device).to(dtype)}
model_pred = self.model.unet(
noisy_latents.to(self.model.unet.dtype), rgb_timesteps, depth_timesteps, encoder_hidden_states=batch_text_embed.to(dtype),
added_cond_kwargs=added_cond_kwargs, separate_list=self.separate_list
).sample # [B, 4, h, w]
if torch.isnan(model_pred).any():
logging.warning("model_pred contains NaN.")
# Get the target for loss depending on the prediction type
if "sample" == self.prediction_type:
rgb_target = rgb_latent
depth_target = gt_depth_latent
elif "epsilon" == self.prediction_type:
rgb_target = rgb_latent
depth_target = gt_depth_latent
elif "v_prediction" == self.prediction_type:
rgb_target = self.training_noise_scheduler.get_velocity(
rgb_latent, rgb_noise, rgb_timesteps
) # [B, 4, h, w]
depth_target = self.training_noise_scheduler.get_velocity(
gt_depth_latent, depth_noise, depth_timesteps
) # [B, 4, h, w]
else:
raise ValueError(f"Unknown prediction type {self.prediction_type}")
# Masked latent loss
with accelerator.accumulate(self.model):
if self.gt_mask_type is not None:
depth_loss = self.loss(
model_pred[:, 4:, :, :][valid_mask_down].float(),
depth_target[valid_mask_down].float(),
)
else:
depth_loss = self.cfg.loss.depth_factor * self.loss(model_pred[:, 4:, :, :].float(),depth_target.float())
rgb_loss = (1 - self.cfg.loss.depth_factor) * self.loss(model_pred[:, 0:4, :, :].float(), rgb_target.float())
if self.cfg.loss.depth_factor == 1:
loss = depth_loss
else:
loss = rgb_loss + depth_loss
self.train_metrics.update("loss", loss.item())
self.train_metrics.update("rgb_loss", rgb_loss.item())
self.train_metrics.update("depth_loss", depth_loss.item())
# loss = loss / self.gradient_accumulation_steps
accelerator.backward(loss)
self.optimizer.step()
self.optimizer.zero_grad()
# loss.backward()
self.n_batch_in_epoch += 1
# print(accelerator.process_index, self.lr_scheduler.get_last_lr())
self.lr_scheduler.step(self.effective_iter)
if accelerator.sync_gradients:
accumulated_step += 1
if accumulated_step >= self.gradient_accumulation_steps:
accumulated_step = 0
self.effective_iter += 1
if accelerator.is_main_process:
# Log to tensorboard
if self.effective_iter == 1:
generator = torch.Generator(self.model.device).manual_seed(1024)
img = self.model.generate_rgbd(self.prompt, num_inference_steps=50, generator=generator,
show_pbar=True)
for idx in range(len(self.prompt)):
tb_logger.writer.add_image(f'image/{self.prompt[idx]}', img[idx], self.effective_iter)
accumulated_loss = self.train_metrics.result()["loss"]
rgb_loss = self.train_metrics.result()["rgb_loss"]
depth_loss = self.train_metrics.result()["depth_loss"]
tb_logger.log_dic(
{
f"train/{k}": v
for k, v in self.train_metrics.result().items()
},
global_step=self.effective_iter,
)
tb_logger.writer.add_scalar(
"lr",
self.lr_scheduler.get_last_lr()[0],
global_step=self.effective_iter,
)
tb_logger.writer.add_scalar(
"n_batch_in_epoch",
self.n_batch_in_epoch,
global_step=self.effective_iter,
)
logging.info(
f"iter {self.effective_iter:5d} (epoch {epoch:2d}): loss={accumulated_loss:.5f}, rgb_loss={rgb_loss:.5f}, depth_loss={depth_loss:.5f}"
)
accelerator.wait_for_everyone()
if self.save_period > 0 and 0 == self.effective_iter % self.save_period:
accelerator.save_state(output_dir=os.path.join(self.out_dir_ckpt, 'latest'))
unwrapped_model = accelerator.unwrap_model(self.model)
if accelerator.is_main_process:
accelerator.save_model(unwrapped_model.unet,
os.path.join(self.out_dir_ckpt, 'latest'), safe_serialization=False)
self.save_miscs('latest')
# RGB-D joint generation
generator = torch.Generator(self.model.device).manual_seed(1024)
img = self.model.generate_rgbd(self.prompt, num_inference_steps=50, generator=generator,show_pbar=False)
for idx in range(len(self.prompt)):
tb_logger.writer.add_image(f'image/{self.prompt[idx]}', img[idx], self.effective_iter)
# depth to RGB generation
self._depth2image()
from diffusers import StableDiffusionControlNetInpaintPipeline
# RGB to depth generation
self._image2depth()
accelerator.wait_for_everyone()
accelerator.wait_for_everyone()
if self.backup_period > 0 and 0 == self.effective_iter % self.backup_period:
unwrapped_model = accelerator.unwrap_model(self.model)
if accelerator.is_main_process:
unwrapped_model.unet.save_pretrained(
os.path.join(self.out_dir_ckpt, self._get_backup_ckpt_name()))
accelerator.wait_for_everyone()
if self.val_period > 0 and 0 == self.effective_iter % self.val_period:
self.validate()
# End of training
if self.max_iter > 0 and self.effective_iter >= self.max_iter:
unwrapped_model = accelerator.unwrap_model(self.model)
if accelerator.is_main_process:
unwrapped_model.unet.save_pretrained(
os.path.join(self.out_dir_ckpt, self._get_backup_ckpt_name()))
accelerator.wait_for_everyone()
return
torch.cuda.empty_cache()
# <<< Effective batch end <<<
# Epoch end
self.n_batch_in_epoch = 0
def _image2depth(self):
generator = torch.Generator(self.model.device).manual_seed(1024)
image2dept_paths = ['/home/aiops/wangzh/data/scannet/scene0593_00/color/000100.jpg',
'/home/aiops/wangzh/data/scannet/scene0593_00/color/000700.jpg',
'/home/aiops/wangzh/data/scannet/scene0591_01/color/000600.jpg',
'/home/aiops/wangzh/data/scannet/scene0591_01/color/001500.jpg']
for img_idx, image_path in enumerate(image2dept_paths):
rgb_input = Image.open(image_path)
depth_pred: MarigoldDepthOutput = self.model.image2depth(
rgb_input,
denoising_steps=self.cfg.validation.denoising_steps,
ensemble_size=self.cfg.validation.ensemble_size,
processing_res=self.cfg.validation.processing_res,
match_input_res=self.cfg.validation.match_input_res,
generator=generator,
batch_size=self.cfg.validation.ensemble_size,
# use batch size 1 to increase reproducibility
color_map="Spectral",
show_progress_bar=False,
resample_method=self.cfg.validation.resample_method,
)
img = self.model.post_process_rgbd(['None'], [rgb_input], [depth_pred['depth_colored']])
tb_logger.writer.add_image(f'image2depth_{img_idx}', img[0], self.effective_iter)
def _depth2image(self):
generator = torch.Generator(self.model.device).manual_seed(1024)
if "least_square_disparity" == self.cfg.eval.alignment:
depth2image_path = ['/home/aiops/wangzh/data/ori_depth_part0-0/sa_10000335.jpg',
'/home/aiops/wangzh/data/ori_depth_part0-0/sa_3572319.jpg',
'/home/aiops/wangzh/data/ori_depth_part0-0/sa_457934.jpg']
else:
depth2image_path = ['/home/aiops/wangzh/data/depth_part0-0/sa_10000335.jpg',
'/home/aiops/wangzh/data/depth_part0-0/sa_3572319.jpg',
'/home/aiops/wangzh/data/depth_part0-0/sa_457934.jpg']
prompts = ['Red car parked in the factory',
'White gothic church with cemetery next to it',
'House with red roof and starry sky in the background']
for img_idx, depth_path in enumerate(depth2image_path):
depth_input = Image.open(depth_path)
image_pred = self.model.single_depth2image(
depth_input,
prompts[img_idx],
num_inference_steps=50,
processing_res=1024,
generator=generator,
show_pbar=False,
resample_method=self.cfg.validation.resample_method,
)
img = self.model.post_process_rgbd([prompts[img_idx]], [image_pred], [depth_input])
tb_logger.writer.add_image(f'depth2image_{img_idx}', img[0], self.effective_iter)
def encode_depth(self, depth_in):
# stack depth into 3-channel
stacked = self.stack_depth_images(depth_in)
# encode using VAE encoder
depth_latent = self.model.encode_rgb(stacked)
return depth_latent
@staticmethod
def stack_depth_images(depth_in):
if 4 == len(depth_in.shape):
stacked = depth_in.repeat(1, 3, 1, 1)
elif 3 == len(depth_in.shape):
stacked = depth_in.unsqueeze(1)
stacked = depth_in.repeat(1, 3, 1, 1)
return stacked
def _train_step_callback(self):
"""Executed after every iteration"""
# Save backup (with a larger interval, without training states)
if self.backup_period > 0 and 0 == self.effective_iter % self.backup_period:
self.save_checkpoint(
ckpt_name=self._get_backup_ckpt_name(), save_train_state=False
)
_is_latest_saved = False
# Validation
if self.val_period > 0 and 0 == self.effective_iter % self.val_period:
self.in_evaluation = True # flag to do evaluation in resume run if validation is not finished
self.save_checkpoint(ckpt_name="latest", save_train_state=True)
_is_latest_saved = True
self.validate()
self.in_evaluation = False
self.save_checkpoint(ckpt_name="latest", save_train_state=True)
# Save training checkpoint (can be resumed)
if (
self.save_period > 0
and 0 == self.effective_iter % self.save_period
and not _is_latest_saved
):
generator = torch.Generator(self.model.device).manual_seed(1024)
img = self.model.generate_rgbd(self.prompt, num_inference_steps=50, generator=generator, show_pbar=True)
for idx in range(len(self.prompt)):
tb_logger.writer.add_image(f'image/{self.prompt[idx]}', img[idx], self.effective_iter)
self.save_checkpoint(ckpt_name="latest", save_train_state=True)
# Visualization
if self.vis_period > 0 and 0 == self.effective_iter % self.vis_period:
self.visualize()
def validate(self):
for i, val_loader in enumerate(self.val_loaders):
val_dataset_name = val_loader.dataset.disp_name
val_metric_dic = self.validate_single_dataset(
data_loader=val_loader, metric_tracker=self.val_metrics
)
if self.accelerator.is_main_process:
val_metric_dic = {k:torch.tensor(v).cuda() for k,v in val_metric_dic.items()}
tb_logger.log_dic(
{f"val/{val_dataset_name}/{k}": v for k, v in val_metric_dic.items()},
global_step=self.effective_iter,
)
# save to file
eval_text = eval_dic_to_text(
val_metrics=val_metric_dic,
dataset_name=val_dataset_name,
sample_list_path=val_loader.dataset.filename_ls_path,
)
_save_to = os.path.join(
self.out_dir_eval,
f"eval-{val_dataset_name}-iter{self.effective_iter:06d}.txt",
)
with open(_save_to, "w+") as f:
f.write(eval_text)
# Update main eval metric
if 0 == i:
main_eval_metric = val_metric_dic[self.main_val_metric]
if (
"minimize" == self.main_val_metric_goal
and main_eval_metric < self.best_metric
or "maximize" == self.main_val_metric_goal
and main_eval_metric > self.best_metric
):
self.best_metric = main_eval_metric
logging.info(
f"Best metric: {self.main_val_metric} = {self.best_metric} at iteration {self.effective_iter}"
)
# Save a checkpoint
self.save_checkpoint(
ckpt_name='best', save_train_state=False
)
self.accelerator.wait_for_everyone()
def visualize(self):
for val_loader in self.vis_loaders:
vis_dataset_name = val_loader.dataset.disp_name
vis_out_dir = os.path.join(
self.out_dir_vis, self._get_backup_ckpt_name(), vis_dataset_name
)
os.makedirs(vis_out_dir, exist_ok=True)
_ = self.validate_single_dataset(
data_loader=val_loader,
metric_tracker=self.val_metrics,
save_to_dir=vis_out_dir,
)
@torch.no_grad()
def validate_single_dataset(
self,
data_loader: DataLoader,
metric_tracker: MetricTracker,
save_to_dir: str = None,
):
self.model.to(self.device)
metric_tracker.reset()
# Generate seed sequence for consistent evaluation
val_init_seed = self.cfg.validation.init_seed
val_seed_ls = generate_seed_sequence(val_init_seed, len(data_loader))
for i, batch in enumerate(
tqdm(data_loader, desc=f"evaluating on {data_loader.dataset.disp_name}"),
start=1,
):
rgb_int = batch["rgb_int"] # [3, H, W]
# GT depth
depth_raw_ts = batch["depth_raw_linear"].squeeze()
depth_raw = depth_raw_ts.cpu().numpy()
depth_raw_ts = depth_raw_ts.to(self.device)
valid_mask_ts = batch["valid_mask_raw"].squeeze()
valid_mask = valid_mask_ts.cpu().numpy()
valid_mask_ts = valid_mask_ts.to(self.device)
# Random number generator
seed = val_seed_ls.pop()
if seed is None:
generator = None
else:
generator = torch.Generator(device=self.device)
generator.manual_seed(seed)
# Predict depth
pipe_out: MarigoldDepthOutput = self.model.image2depth(
rgb_int,
denoising_steps=self.cfg.validation.denoising_steps,
ensemble_size=self.cfg.validation.ensemble_size,
processing_res=self.cfg.validation.processing_res,
match_input_res=self.cfg.validation.match_input_res,
generator=generator,
batch_size=self.cfg.validation.ensemble_size, # use batch size 1 to increase reproducibility
color_map=None,
show_progress_bar=False,
resample_method=self.cfg.validation.resample_method,
)
depth_pred: np.ndarray = pipe_out.depth_np
if "least_square" == self.cfg.eval.alignment:
depth_pred, scale, shift = align_depth_least_square(
gt_arr=depth_raw,
pred_arr=depth_pred,
valid_mask_arr=valid_mask,
return_scale_shift=True,
max_resolution=self.cfg.eval.align_max_res,
)
else:
raise RuntimeError(f"Unknown alignment type: {self.cfg.eval.alignment}")
# Clip to dataset min max
depth_pred = np.clip(
depth_pred,
a_min=data_loader.dataset.min_depth,
a_max=data_loader.dataset.max_depth,
)
# clip to d > 0 for evaluation
depth_pred = np.clip(depth_pred, a_min=1e-6, a_max=None)
# Evaluate
sample_metric = []
depth_pred_ts = torch.from_numpy(depth_pred).to(self.device)
for met_func in self.metric_funcs:
_metric_name = met_func.__name__
_metric = met_func(depth_pred_ts, depth_raw_ts, valid_mask_ts).cuda(self.accelerator.process_index)
self.accelerator.wait_for_everyone()
_metric = self.accelerator.gather_for_metrics(_metric.unsqueeze(0)).mean().item()
sample_metric.append(_metric.__str__())
metric_tracker.update(_metric_name, _metric)
self.accelerator.wait_for_everyone()
# Save as 16-bit uint png
if save_to_dir is not None:
img_name = batch["rgb_relative_path"][0].replace("/", "_")
png_save_path = os.path.join(save_to_dir, f"{img_name}.png")
depth_to_save = (pipe_out.depth_np * 65535.0).astype(np.uint16)
Image.fromarray(depth_to_save).save(png_save_path, mode="I;16")
return metric_tracker.result()
def _get_next_seed(self):
if 0 == len(self.global_seed_sequence):
self.global_seed_sequence = generate_seed_sequence(
initial_seed=self.seed,
length=self.max_iter * self.gradient_accumulation_steps,
)
logging.info(
f"Global seed sequence is generated, length={len(self.global_seed_sequence)}"
)
return self.global_seed_sequence.pop()
def save_miscs(self, ckpt_name):
ckpt_dir = os.path.join(self.out_dir_ckpt, ckpt_name)
state = {
"config": self.cfg,
"effective_iter": self.effective_iter,
"epoch": self.epoch,
"n_batch_in_epoch": self.n_batch_in_epoch,
"best_metric": self.best_metric,
"in_evaluation": self.in_evaluation,
"global_seed_sequence": self.global_seed_sequence,
}
train_state_path = os.path.join(ckpt_dir, "trainer.ckpt")
torch.save(state, train_state_path)
logging.info(f"Misc state is saved to: {train_state_path}")
def load_miscs(self, ckpt_path):
checkpoint = torch.load(os.path.join(ckpt_path, "trainer.ckpt"))
self.effective_iter = checkpoint["effective_iter"]
self.epoch = checkpoint["epoch"]
self.n_batch_in_epoch = checkpoint["n_batch_in_epoch"]
self.in_evaluation = checkpoint["in_evaluation"]
self.global_seed_sequence = checkpoint["global_seed_sequence"]
self.best_metric = checkpoint["best_metric"]
logging.info(f"Misc state is loaded from {ckpt_path}")
def save_checkpoint(self, ckpt_name, save_train_state):
ckpt_dir = os.path.join(self.out_dir_ckpt, ckpt_name)
logging.info(f"Saving checkpoint to: {ckpt_dir}")
# Backup previous checkpoint
temp_ckpt_dir = None
if os.path.exists(ckpt_dir) and os.path.isdir(ckpt_dir):
temp_ckpt_dir = os.path.join(
os.path.dirname(ckpt_dir), f"_old_{os.path.basename(ckpt_dir)}"
)
if os.path.exists(temp_ckpt_dir):
shutil.rmtree(temp_ckpt_dir, ignore_errors=True)
os.rename(ckpt_dir, temp_ckpt_dir)
logging.debug(f"Old checkpoint is backed up at: {temp_ckpt_dir}")
# Save UNet
unet_path = os.path.join(ckpt_dir, "unet")
self.model.unet.save_pretrained(unet_path, safe_serialization=False)
logging.info(f"UNet is saved to: {unet_path}")
if save_train_state:
state = {
"config": self.cfg,
"effective_iter": self.effective_iter,
"epoch": self.epoch,
"n_batch_in_epoch": self.n_batch_in_epoch,
"best_metric": self.best_metric,
"in_evaluation": self.in_evaluation,
"global_seed_sequence": self.global_seed_sequence,
}
train_state_path = os.path.join(ckpt_dir, "trainer.ckpt")
torch.save(state, train_state_path)
# iteration indicator
f = open(os.path.join(ckpt_dir, self._get_backup_ckpt_name()), "w")
f.close()
logging.info(f"Trainer state is saved to: {train_state_path}")
# Remove temp ckpt
if temp_ckpt_dir is not None and os.path.exists(temp_ckpt_dir):
shutil.rmtree(temp_ckpt_dir, ignore_errors=True)
logging.debug("Old checkpoint backup is removed.")
def load_checkpoint(
self, ckpt_path, load_trainer_state=True, resume_lr_scheduler=True
):
logging.info(f"Loading checkpoint from: {ckpt_path}")
# Load UNet
_model_path = os.path.join(ckpt_path, "unet", "diffusion_pytorch_model.bin")
self.model.unet.load_state_dict(
torch.load(_model_path, map_location=self.device)
)
self.model.unet.to(self.device)
logging.info(f"UNet parameters are loaded from {_model_path}")
# Load training states
if load_trainer_state:
checkpoint = torch.load(os.path.join(ckpt_path, "trainer.ckpt"))
self.effective_iter = checkpoint["effective_iter"]
self.epoch = checkpoint["epoch"]
self.n_batch_in_epoch = checkpoint["n_batch_in_epoch"]
self.in_evaluation = checkpoint["in_evaluation"]
self.global_seed_sequence = checkpoint["global_seed_sequence"]
self.best_metric = checkpoint["best_metric"]
self.optimizer.load_state_dict(checkpoint["optimizer"])
logging.info(f"optimizer state is loaded from {ckpt_path}")
if resume_lr_scheduler:
self.lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
logging.info(f"LR scheduler state is loaded from {ckpt_path}")
logging.info(
f"Checkpoint loaded from: {ckpt_path}. Resume from iteration {self.effective_iter} (epoch {self.epoch})"
)
return
def _get_backup_ckpt_name(self):
return f"iter_{self.effective_iter:06d}"
|