File size: 30,257 Bytes
864ec44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
# An official reimplemented version of Marigold training script.
# Last modified: 2024-04-29
#
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# If you use or adapt this code, please attribute to https://github.com/prs-eth/marigold.
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
from diffusers import StableDiffusionInpaintPipeline
import logging
import os
import pdb
import cv2
import shutil
import json
from pycocotools import mask as coco_mask
from datetime import datetime
from typing import List, Union
import random
import safetensors
import numpy as np
import torch
from diffusers import DDPMScheduler
from omegaconf import OmegaConf
from torch.nn import Conv2d
from torch.nn.parameter import Parameter
from torch.optim import Adam
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from PIL import Image
# import torch.optim.lr_scheduler

from diffusers.schedulers import PNDMScheduler
from torchvision.transforms.functional import pil_to_tensor
from marigold.marigold_pipeline import MarigoldPipeline, MarigoldDepthOutput
from src.util import metric
from src.util.data_loader import skip_first_batches
from src.util.logging_util import tb_logger, eval_dic_to_text
from src.util.loss import get_loss
from src.util.lr_scheduler import IterExponential
from src.util.metric import MetricTracker
from src.util.multi_res_noise import multi_res_noise_like
from src.util.alignment import align_depth_least_square, depth2disparity, disparity2depth
from src.util.seeding import generate_seed_sequence
from accelerate import Accelerator
import os
from torchvision.transforms import InterpolationMode, Resize, CenterCrop
import torchvision.transforms as transforms
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'

class MarigoldInpaintTrainer:
    def __init__(
        self,
        cfg: OmegaConf,
        model: MarigoldPipeline,
        train_dataloader: DataLoader,
        device,
        base_ckpt_dir,
        out_dir_ckpt,
        out_dir_eval,
        out_dir_vis,
        accumulation_steps: int,
        depth_model = None,
        separate_list: List = None,
        val_dataloaders: List[DataLoader] = None,
        vis_dataloaders: List[DataLoader] = None,
        train_dataset: Dataset = None,
        timestep_method: str = 'unidiffuser',
        connection: bool = False
    ):
        self.cfg: OmegaConf = cfg
        self.model: MarigoldPipeline = model
        self.depth_model = depth_model
        self.device = device
        self.seed: Union[int, None] = (
            self.cfg.trainer.init_seed
        )  # used to generate seed sequence, set to `None` to train w/o seeding
        self.out_dir_ckpt = out_dir_ckpt
        self.out_dir_eval = out_dir_eval
        self.out_dir_vis = out_dir_vis
        self.train_loader: DataLoader = train_dataloader
        self.val_loaders: List[DataLoader] = val_dataloaders
        self.vis_loaders: List[DataLoader] = vis_dataloaders
        self.accumulation_steps: int = accumulation_steps
        self.separate_list = separate_list
        self.timestep_method = timestep_method
        self.train_dataset = train_dataset
        self.connection = connection
        # Adapt input layers
        # if 8 != self.model.unet.config["in_channels"]:
        #     self._replace_unet_conv_in()
        # if 8 != self.model.unet.config["out_channels"]:
        #     self._replace_unet_conv_out()

        self.train_metrics = MetricTracker(*["loss", 'rgb_loss', 'depth_loss'])
        # self.generator = torch.Generator('cuda:0').manual_seed(1024)

        # Encode empty text prompt
        self.model.encode_empty_text()
        self.empty_text_embed = self.model.empty_text_embed.detach().clone().to(device)

        self.model.unet.enable_xformers_memory_efficient_attention()

        # Trainability
        self.model.text_encoder.requires_grad_(False)
        # self.model.unet.requires_grad_(True)

        grad_part = filter(lambda p: p.requires_grad, self.model.unet.parameters())

        # Optimizer !should be defined after input layer is adapted
        lr = self.cfg.lr
        self.optimizer = Adam(grad_part, lr=lr)

        total_params = sum(p.numel() for p in self.model.unet.parameters())
        total_params_m = total_params / 1_000_000
        print(f"Total parameters: {total_params_m:.2f}M")
        trainable_params = sum(p.numel() for p in self.model.unet.parameters() if p.requires_grad)
        trainable_params_m = trainable_params / 1_000_000
        print(f"Trainable parameters: {trainable_params_m:.2f}M")

        # LR scheduler
        lr_func = IterExponential(
            total_iter_length=self.cfg.lr_scheduler.kwargs.total_iter,
            final_ratio=self.cfg.lr_scheduler.kwargs.final_ratio,
            warmup_steps=self.cfg.lr_scheduler.kwargs.warmup_steps,
        )
        self.lr_scheduler = LambdaLR(optimizer=self.optimizer, lr_lambda=lr_func)

        # Loss
        self.loss = get_loss(loss_name=self.cfg.loss.name, **self.cfg.loss.kwargs)

        # Training noise scheduler
        # self.rgb_training_noise_scheduler: PNDMScheduler = PNDMScheduler.from_pretrained(
        #     os.path.join(
        #         cfg.trainer.rgb_training_noise_scheduler.pretrained_path,
        #         "scheduler",
        #     )
        # )

        self.rgb_training_noise_scheduler: DDPMScheduler = DDPMScheduler.from_pretrained(
            cfg.trainer.depth_training_noise_scheduler.pretrained_path, subfolder="scheduler")
        self.depth_training_noise_scheduler: DDPMScheduler = DDPMScheduler.from_pretrained(
            cfg.trainer.depth_training_noise_scheduler.pretrained_path, subfolder="scheduler")

        self.rgb_prediction_type = self.rgb_training_noise_scheduler.config.prediction_type
        # assert (
        #     self.rgb_prediction_type == self.model.rgb_scheduler.config.prediction_type
        # ), "Different prediction types"
        self.depth_prediction_type = self.depth_training_noise_scheduler.config.prediction_type
        assert (
                self.depth_prediction_type == self.model.depth_scheduler.config.prediction_type
        ), "Different prediction types"
        self.scheduler_timesteps = (
            self.rgb_training_noise_scheduler.config.num_train_timesteps
        )

        # Settings
        self.max_epoch = self.cfg.max_epoch
        self.max_iter = self.cfg.max_iter
        self.gradient_accumulation_steps = accumulation_steps
        self.gt_depth_type = self.cfg.gt_depth_type
        self.gt_mask_type = self.cfg.gt_mask_type
        self.save_period = self.cfg.trainer.save_period
        self.backup_period = self.cfg.trainer.backup_period
        self.val_period = self.cfg.trainer.validation_period
        self.vis_period = self.cfg.trainer.visualization_period

        # Multi-resolution noise
        self.apply_multi_res_noise = self.cfg.multi_res_noise is not None
        if self.apply_multi_res_noise:
            self.mr_noise_strength = self.cfg.multi_res_noise.strength
            self.annealed_mr_noise = self.cfg.multi_res_noise.annealed
            self.mr_noise_downscale_strategy = (
                self.cfg.multi_res_noise.downscale_strategy
            )

        # Internal variables
        self.epoch = 0
        self.n_batch_in_epoch = 0  # batch index in the epoch, used when resume training
        self.effective_iter = 0  # how many times optimizer.step() is called
        self.in_evaluation = False
        self.global_seed_sequence: List = []  # consistent global seed sequence, used to seed random generator, to ensure consistency when resuming

    def _replace_unet_conv_in(self):
        # replace the first layer to accept 8 in_channels
        _weight = self.model.unet.conv_in.weight.clone()  # [320, 4, 3, 3]
        _bias = self.model.unet.conv_in.bias.clone()  # [320]
        zero_weight = torch.zeros(_weight.shape).to(_weight.device)
        _weight = torch.cat([_weight, zero_weight], dim=1)
        # _weight = _weight.repeat((1, 2, 1, 1))  # Keep selected channel(s)
        # half the activation magnitude
        # _weight *= 0.5
        # new conv_in channel
        _n_convin_out_channel = self.model.unet.conv_in.out_channels
        _new_conv_in = Conv2d(
            8, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        )
        _new_conv_in.weight = Parameter(_weight)
        _new_conv_in.bias = Parameter(_bias)
        self.model.unet.conv_in = _new_conv_in
        logging.info("Unet conv_in layer is replaced")
        # replace config
        self.model.unet.config["in_channels"] = 8
        logging.info("Unet config is updated")
        return

    def parallel_train(self, t_end=None, accelerator=None):
        logging.info("Start training")
        self.model, self.optimizer, self.train_loader, self.lr_scheduler = accelerator.prepare(
            self.model, self.optimizer, self.train_loader, self.lr_scheduler
        )
        self.depth_model = accelerator.prepare(self.depth_model)

        self.accelerator = accelerator
        if os.path.exists(os.path.join(self.out_dir_ckpt, 'latest')):
            accelerator.load_state(os.path.join(self.out_dir_ckpt, 'latest'))
            self.load_miscs(os.path.join(self.out_dir_ckpt, 'latest'))

        # if accelerator.is_main_process:
        #     self._inpaint_rgbd()

        self.train_metrics.reset()
        accumulated_step = 0
        for epoch in range(self.epoch, self.max_epoch + 1):
            self.epoch = epoch
            logging.debug(f"epoch: {self.epoch}")

            # Skip previous batches when resume
            for batch in skip_first_batches(self.train_loader, self.n_batch_in_epoch):
                self.model.unet.train()

                # globally consistent random generators
                if self.seed is not None:
                    local_seed = self._get_next_seed()
                    rand_num_generator = torch.Generator(device=self.model.device)
                    rand_num_generator.manual_seed(local_seed)
                else:
                    rand_num_generator = None

                # >>> With gradient accumulation >>>

                # Get data
                rgb = batch["rgb_norm"].to(self.model.device)
                with torch.no_grad():
                    disparities = self.depth_model(batch["rgb_int"].numpy().astype(np.uint8), 518, device=self.model.device)

                if len(disparities.shape) == 2:
                    disparities = disparities.unsqueeze(0)

                depth_gt_for_latent = []
                for disparity_map in disparities:
                    depth_map = ((disparity_map - disparity_map.min()) / (disparity_map.max() - disparity_map.min())) * 2 - 1
                    depth_gt_for_latent.append(depth_map)
                depth_gt_for_latent = torch.stack(depth_gt_for_latent, dim=0)

                batch_size = rgb.shape[0]

                mask = self.model.mask_processor.preprocess(batch['mask'] * 255).to(self.model.device)

                rgb_timesteps = torch.randint(
                    0,
                    self.scheduler_timesteps,
                    (batch_size,),
                    device=self.model.device,
                    generator=rand_num_generator,
                ).long()  # [B]
                depth_timesteps = rgb_timesteps

                rgb_flag = 1
                depth_flag = 1

                if self.timestep_method == 'joint':
                    rgb_mask = mask
                    depth_mask = mask

                elif self.timestep_method == 'partition':
                    rand_num = random.random()
                    if rand_num < 0.5:  # joint prediction
                        rgb_mask = mask
                        depth_mask = mask
                    elif rand_num < 0.75:  # full rgb; depth prediction
                        rgb_flag = 0
                        rgb_mask = torch.zeros_like(mask)
                        depth_mask = mask
                    else:
                        depth_flag = 0
                        rgb_mask = mask
                        if random.random() < 0.5:
                            depth_mask = torch.zeros_like(mask) # full depth; rgb prediction
                        else:
                            depth_mask = mask  # partial depth; rgb prediction

                masked_rgb = rgb * (rgb_mask < 0.5)
                masked_depth = depth_gt_for_latent * (depth_mask.squeeze() < 0.5)
                with torch.no_grad():
                    # Encode image
                    rgb_latent = self.model.encode_rgb(rgb)  # [B, 4, h, w]
                    mask_rgb_latent = self.model.encode_rgb(masked_rgb)

                    if depth_timesteps.sum() == 0:
                        gt_depth_latent = self.encode_depth(masked_depth)
                    else:
                        gt_depth_latent = self.encode_depth(depth_gt_for_latent)
                    mask_depth_latent = self.encode_depth(masked_depth)

                rgb_mask = torch.nn.functional.interpolate(rgb_mask, size=rgb_latent.shape[-2:])
                depth_mask = torch.nn.functional.interpolate(depth_mask, size=gt_depth_latent.shape[-2:])

                # Sample noise
                rgb_noise = torch.randn(
                    rgb_latent.shape,
                    device=self.model.device,
                    generator=rand_num_generator,
                )  # [B, 4, h, w]
                depth_noise = torch.randn(
                    gt_depth_latent.shape,
                    device=self.model.device,
                    generator=rand_num_generator,
                )  # [B, 4, h, w]

                if rgb_timesteps.sum() == 0:
                    noisy_rgb_latents = rgb_latent
                else:
                    noisy_rgb_latents = self.rgb_training_noise_scheduler.add_noise(
                        rgb_latent, rgb_noise, rgb_timesteps
                    )  # [B, 4, h, w]
                if depth_timesteps.sum() == 0:
                    noisy_depth_latents = gt_depth_latent
                else:
                    noisy_depth_latents = self.depth_training_noise_scheduler.add_noise(
                        gt_depth_latent, depth_noise, depth_timesteps
                    )  # [B, 4, h, w]

                noisy_latents = torch.cat(
                    [noisy_rgb_latents, rgb_mask, mask_rgb_latent, mask_depth_latent, noisy_depth_latents, depth_mask, mask_rgb_latent, mask_depth_latent], dim=1
                ).float()  # [B, 9*2, h, w]

                # Text embedding
                input_ids = self.model.tokenizer(
                    batch['text'],
                    padding="max_length",
                    max_length=self.model.tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                input_ids = {k: v.to(self.model.device) for k, v in input_ids.items()}
                text_embed = self.model.text_encoder(**input_ids)[0]

                model_pred = self.model.unet(
                    noisy_latents, rgb_timesteps, depth_timesteps, text_embed, controlnet_connection=self.connection
                ).sample  # [B, 8, h, w]

                if torch.isnan(model_pred).any():
                    logging.warning("model_pred contains NaN.")

                # Get the target for loss depending on the prediction type
                if "sample" == self.rgb_prediction_type:
                    rgb_target = rgb_latent
                elif "epsilon" == self.rgb_prediction_type:
                    rgb_target = rgb_latent
                elif "v_prediction" == self.rgb_prediction_type:
                    rgb_target = self.rgb_training_noise_scheduler.get_velocity(
                        rgb_latent, rgb_noise, rgb_timesteps
                    )  # [B, 4, h, w]
                else:
                    raise ValueError(f"Unknown rgb prediction type {self.prediction_type}")

                if "sample" == self.depth_prediction_type:
                    depth_target = gt_depth_latent
                elif "epsilon" == self.depth_prediction_type:
                    depth_target = gt_depth_latent
                elif "v_prediction" == self.depth_prediction_type:
                    depth_target = self.depth_training_noise_scheduler.get_velocity(
                        gt_depth_latent, depth_noise, depth_timesteps
                    )  # [B, 4, h, w]
                else:
                    raise ValueError(f"Unknown depth prediction type {self.prediction_type}")
                # Masked latent loss
                with accelerator.accumulate(self.model):

                    rgb_loss = self.loss(model_pred[:, 0:4, :, :].float(), rgb_target.float())
                    depth_loss = self.loss(model_pred[:, 4:, :, :].float(), depth_target.float())

                    if rgb_flag == 0:
                        loss = depth_loss
                    elif depth_flag == 0:
                        loss = rgb_loss
                    else:
                        loss = self.cfg.loss.depth_factor * depth_loss + (1 - self.cfg.loss.depth_factor) * rgb_loss

                    self.train_metrics.update("loss", loss.item())
                    self.train_metrics.update("rgb_loss", rgb_loss.item())
                    self.train_metrics.update("depth_loss", depth_loss.item())
                    # loss = loss / self.gradient_accumulation_steps
                    accelerator.backward(loss)
                    self.optimizer.step()
                    self.optimizer.zero_grad()
                    # loss.backward()
                    self.n_batch_in_epoch += 1
                    # print(accelerator.process_index, self.lr_scheduler.get_last_lr())
                    self.lr_scheduler.step(self.effective_iter)

                if accelerator.sync_gradients:
                    accumulated_step += 1

                if accumulated_step >= self.gradient_accumulation_steps:
                    accumulated_step = 0
                    self.effective_iter += 1

                    if accelerator.is_main_process:
                        # Log to tensorboard
                        if self.effective_iter == 1:
                            self._inpaint_rgbd()

                        accumulated_loss = self.train_metrics.result()["loss"]
                        rgb_loss = self.train_metrics.result()["rgb_loss"]
                        depth_loss = self.train_metrics.result()["depth_loss"]
                        tb_logger.log_dic(
                            {
                                f"train/{k}": v
                                for k, v in self.train_metrics.result().items()
                            },
                            global_step=self.effective_iter,
                        )
                        tb_logger.writer.add_scalar(
                            "lr",
                            self.lr_scheduler.get_last_lr()[0],
                            global_step=self.effective_iter,
                        )
                        tb_logger.writer.add_scalar(
                            "n_batch_in_epoch",
                            self.n_batch_in_epoch,
                            global_step=self.effective_iter,
                        )
                        logging.info(
                            f"iter {self.effective_iter:5d} (epoch {epoch:2d}): loss={accumulated_loss:.5f}, rgb_loss={rgb_loss:.5f}, depth_loss={depth_loss:.5f}"
                        )
                    accelerator.wait_for_everyone()

                    if self.save_period > 0 and 0 == self.effective_iter % self.save_period:
                        accelerator.save_state(output_dir=os.path.join(self.out_dir_ckpt, 'latest'))
                        unwrapped_model = accelerator.unwrap_model(self.model)
                        if accelerator.is_main_process:
                            accelerator.save_model(unwrapped_model.unet,
                                                   os.path.join(self.out_dir_ckpt, 'latest'), safe_serialization=False)
                            self.save_miscs('latest')
                            self._inpaint_rgbd()
                        accelerator.wait_for_everyone()

                    if self.backup_period > 0 and 0 == self.effective_iter % self.backup_period:
                        unwrapped_model = accelerator.unwrap_model(self.model)
                        if accelerator.is_main_process:
                            accelerator.save_model(unwrapped_model.unet,
                                                   os.path.join(self.out_dir_ckpt, self._get_backup_ckpt_name()), safe_serialization=False)
                        accelerator.wait_for_everyone()

                    # End of training
                    if self.max_iter > 0 and self.effective_iter >= self.max_iter:
                        unwrapped_model = accelerator.unwrap_model(self.model)
                        if accelerator.is_main_process:
                            unwrapped_model.unet.save_pretrained(
                                os.path.join(self.out_dir_ckpt, self._get_backup_ckpt_name()))
                        accelerator.wait_for_everyone()
                        return

                    torch.cuda.empty_cache()
                    # <<< Effective batch end <<<

                    # Epoch end
                    self.n_batch_in_epoch = 0

    def _inpaint_rgbd(self):
        image_path = ['/dataset/~sa-1b/data/sa_001000/sa_10000335.jpg',
                      '/dataset/~sa-1b/data/sa_000357/sa_3572319.jpg',
                      '/dataset/~sa-1b/data/sa_000045/sa_457934.jpg']
        prompt = ['A white car is parked in front of the factory',
                  'church with cemetery next to it',
                  'A house with a red brick roof']

        imgs = [pil_to_tensor(Image.open(p)) for p in image_path]
        depth_imgs = [self.depth_model(img.unsqueeze(0).cpu().numpy()) for img in imgs]

        masks = []
        for rgb_path in image_path:
            anno = json.load(open(rgb_path.replace('.jpg', '.json')))['annotations']
            random.shuffle(anno)
            object_num = random.randint(5, 10)
            mask = np.array(coco_mask.decode(anno[0]['segmentation']), dtype=np.uint8)
            for single_anno in (anno[0:object_num] if len(anno)>object_num else anno):
                mask += np.array(coco_mask.decode(single_anno['segmentation']), dtype=np.uint8)
            masks.append(torch.from_numpy(mask))

        resize_transform = transforms.Compose([
            Resize(size=512, interpolation=InterpolationMode.NEAREST_EXACT),
            CenterCrop(size=[512, 512])])
        imgs = [resize_transform(img) for img in imgs]
        depth_imgs = [resize_transform(depth_img.unsqueeze(0)) for depth_img in depth_imgs]
        masks = [resize_transform(mask.unsqueeze(0)) for mask in masks]
        # pdb.set_trace()

        for i in range(len(imgs)):
            output_image = self.model._rgbd_inpaint(imgs[i], depth_imgs[i], masks[i], [prompt[i]], processing_res=512, mode='joint_inpaint')
            tb_logger.writer.add_image(f'{prompt[i]}', pil_to_tensor(output_image), self.effective_iter)

    def encode_depth(self, depth_in):
        # stack depth into 3-channel
        stacked = self.stack_depth_images(depth_in)
        # encode using VAE encoder
        depth_latent = self.model.encode_rgb(stacked)
        return depth_latent

    @staticmethod
    def stack_depth_images(depth_in):
        if 4 == len(depth_in.shape):
            stacked = depth_in.repeat(1, 3, 1, 1)
        elif 3 == len(depth_in.shape):
            stacked = depth_in.unsqueeze(1)
            stacked = stacked.repeat(1, 3, 1, 1)
        elif 2 == len(depth_in.shape):
            stacked = depth_in.unsqueeze(0).unsqueeze(0)
            stacked = stacked.repeat(1, 3, 1, 1)
        return stacked

    def visualize(self):
        for val_loader in self.vis_loaders:
            vis_dataset_name = val_loader.dataset.disp_name
            vis_out_dir = os.path.join(
                self.out_dir_vis, self._get_backup_ckpt_name(), vis_dataset_name
            )
            os.makedirs(vis_out_dir, exist_ok=True)
            _ = self.validate_single_dataset(
                data_loader=val_loader,
                metric_tracker=self.val_metrics,
                save_to_dir=vis_out_dir,
            )

    def _get_next_seed(self):
        if 0 == len(self.global_seed_sequence):
            self.global_seed_sequence = generate_seed_sequence(
                initial_seed=self.seed,
                length=self.max_iter * self.gradient_accumulation_steps,
            )
            logging.info(
                f"Global seed sequence is generated, length={len(self.global_seed_sequence)}"
            )
        return self.global_seed_sequence.pop()

    def save_miscs(self, ckpt_name):
        ckpt_dir = os.path.join(self.out_dir_ckpt, ckpt_name)
        state = {
            "config": self.cfg,
            "effective_iter": self.effective_iter,
            "epoch": self.epoch,
            "n_batch_in_epoch": self.n_batch_in_epoch,
            "global_seed_sequence": self.global_seed_sequence,
        }
        train_state_path = os.path.join(ckpt_dir, "trainer.ckpt")
        torch.save(state, train_state_path)

        logging.info(f"Misc state is saved to: {train_state_path}")

    def load_miscs(self, ckpt_path):
        checkpoint = torch.load(os.path.join(ckpt_path, "trainer.ckpt"))
        self.effective_iter = checkpoint["effective_iter"]
        self.epoch = checkpoint["epoch"]
        self.n_batch_in_epoch = checkpoint["n_batch_in_epoch"]
        self.global_seed_sequence = checkpoint["global_seed_sequence"]

        logging.info(f"Misc state is loaded from {ckpt_path}")


    def save_checkpoint(self, ckpt_name, save_train_state):
        ckpt_dir = os.path.join(self.out_dir_ckpt, ckpt_name)
        logging.info(f"Saving checkpoint to: {ckpt_dir}")
        # Backup previous checkpoint
        temp_ckpt_dir = None
        if os.path.exists(ckpt_dir) and os.path.isdir(ckpt_dir):
            temp_ckpt_dir = os.path.join(
                os.path.dirname(ckpt_dir), f"_old_{os.path.basename(ckpt_dir)}"
            )
            if os.path.exists(temp_ckpt_dir):
                shutil.rmtree(temp_ckpt_dir, ignore_errors=True)
            os.rename(ckpt_dir, temp_ckpt_dir)
            logging.debug(f"Old checkpoint is backed up at: {temp_ckpt_dir}")

        # Save UNet
        unet_path = os.path.join(ckpt_dir, "unet")
        self.model.unet.save_pretrained(unet_path, safe_serialization=False)
        logging.info(f"UNet is saved to: {unet_path}")

        if save_train_state:
            state = {
                "config": self.cfg,
                "effective_iter": self.effective_iter,
                "epoch": self.epoch,
                "n_batch_in_epoch": self.n_batch_in_epoch,
                "best_metric": self.best_metric,
                "in_evaluation": self.in_evaluation,
                "global_seed_sequence": self.global_seed_sequence,
            }
            train_state_path = os.path.join(ckpt_dir, "trainer.ckpt")
            torch.save(state, train_state_path)
            # iteration indicator
            f = open(os.path.join(ckpt_dir, self._get_backup_ckpt_name()), "w")
            f.close()

            logging.info(f"Trainer state is saved to: {train_state_path}")

        # Remove temp ckpt
        if temp_ckpt_dir is not None and os.path.exists(temp_ckpt_dir):
            shutil.rmtree(temp_ckpt_dir, ignore_errors=True)
            logging.debug("Old checkpoint backup is removed.")

    def load_checkpoint(
        self, ckpt_path, load_trainer_state=True, resume_lr_scheduler=True
    ):
        logging.info(f"Loading checkpoint from: {ckpt_path}")
        # Load UNet
        _model_path = os.path.join(ckpt_path, "unet", "diffusion_pytorch_model.bin")
        self.model.unet.load_state_dict(
            torch.load(_model_path, map_location=self.device)
        )
        self.model.unet.to(self.device)
        logging.info(f"UNet parameters are loaded from {_model_path}")

        # Load training states
        if load_trainer_state:
            checkpoint = torch.load(os.path.join(ckpt_path, "trainer.ckpt"))
            self.effective_iter = checkpoint["effective_iter"]
            self.epoch = checkpoint["epoch"]
            self.n_batch_in_epoch = checkpoint["n_batch_in_epoch"]
            self.in_evaluation = checkpoint["in_evaluation"]
            self.global_seed_sequence = checkpoint["global_seed_sequence"]

            self.best_metric = checkpoint["best_metric"]

            self.optimizer.load_state_dict(checkpoint["optimizer"])
            logging.info(f"optimizer state is loaded from {ckpt_path}")

            if resume_lr_scheduler:
                self.lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
                logging.info(f"LR scheduler state is loaded from {ckpt_path}")

        logging.info(
            f"Checkpoint loaded from: {ckpt_path}. Resume from iteration {self.effective_iter} (epoch {self.epoch})"
        )
        return

    def _get_backup_ckpt_name(self):
        return f"iter_{self.effective_iter:06d}"