File size: 3,960 Bytes
864ec44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Last modified: 2024-02-08
#
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# If you use or adapt this code, please attribute to https://github.com/prs-eth/marigold.
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------

import torch

from .base_depth_dataset import BaseDepthDataset, DepthFileNameMode
from .kitti_dataset import KITTIDataset

class VirtualKITTIDataset(BaseDepthDataset):
    def __init__(
        self,
        kitti_bm_crop,  # Crop to KITTI benchmark size
        valid_mask_crop,  # Evaluation mask. [None, garg or eigen]
        **kwargs,
    ) -> None:
        super().__init__(
            # virtual KITTI data parameter
            min_depth=1e-5,
            max_depth=80,  # 655.35
            has_filled_depth=False,
            name_mode=DepthFileNameMode.id,
            **kwargs,
        )
        self.kitti_bm_crop = kitti_bm_crop
        self.valid_mask_crop = valid_mask_crop
        assert self.valid_mask_crop in [
            None,
            "garg",  # set evaluation mask according to Garg  ECCV16
            "eigen",  # set evaluation mask according to Eigen NIPS14
        ], f"Unknown crop type: {self.valid_mask_crop}"

        # Filter out empty depth
        self.filenames = self.filenames

    def _read_depth_file(self, rel_path):
        depth_in = self._read_image(rel_path)
        # Decode vKITTI depth
        depth_decoded = depth_in / 100.0
        return depth_decoded

    def _load_rgb_data(self, rgb_rel_path):
        rgb_data = super()._load_rgb_data(rgb_rel_path)
        if self.kitti_bm_crop:
            rgb_data = {
                k: KITTIDataset.kitti_benchmark_crop(v) for k, v in rgb_data.items()
            }
        return rgb_data

    def _load_depth_data(self, depth_rel_path, filled_rel_path=None):
        depth_data = super()._load_depth_data(depth_rel_path, filled_rel_path)
        if self.kitti_bm_crop:
            depth_data = {
                k: KITTIDataset.kitti_benchmark_crop(v) for k, v in depth_data.items()
            }
        return depth_data

    def _get_valid_mask(self, depth: torch.Tensor):
        # reference: https://github.com/cleinc/bts/blob/master/pytorch/bts_eval.py
        valid_mask = super()._get_valid_mask(depth)  # [1, H, W]

        if self.valid_mask_crop is not None:
            eval_mask = torch.zeros_like(valid_mask.squeeze()).bool()
            gt_height, gt_width = eval_mask.shape

            if "garg" == self.valid_mask_crop:
                eval_mask[
                    int(0.40810811 * gt_height) : int(0.99189189 * gt_height),
                    int(0.03594771 * gt_width) : int(0.96405229 * gt_width),
                ] = 1
            elif "eigen" == self.valid_mask_crop:
                eval_mask[
                    int(0.3324324 * gt_height) : int(0.91351351 * gt_height),
                    int(0.0359477 * gt_width) : int(0.96405229 * gt_width),
                ] = 1

            eval_mask.reshape(valid_mask.shape)
            valid_mask = torch.logical_and(valid_mask, eval_mask)
        return valid_mask