File size: 3,701 Bytes
864ec44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
# Last modified: 2024-04-16
#
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# If you use or adapt this code, please attribute to https://github.com/prs-eth/marigold.
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import os
import pdb
from .base_depth_dataset import BaseDepthDataset # noqa: F401
from .eval_base_dataset import EvaluateBaseDataset, DatasetMode, get_pred_name
from .diode_dataset import DIODEDataset
from .eth3d_dataset import ETH3DDataset
from .hypersim_dataset import HypersimDataset
from .kitti_dataset import KITTIDataset
from .nyu_dataset import NYUDataset
from .scannet_dataset import ScanNetDataset
from .vkitti_dataset import VirtualKITTIDataset
from .depthanything_dataset import DepthAnythingDataset
from .base_inpaint_dataset import BaseInpaintDataset
dataset_name_class_dict = {
"hypersim": HypersimDataset,
"vkitti": VirtualKITTIDataset,
"nyu_v2": NYUDataset,
"kitti": KITTIDataset,
"eth3d": ETH3DDataset,
"diode": DIODEDataset,
"scannet": ScanNetDataset,
'depthanything': DepthAnythingDataset,
'inpainting': BaseInpaintDataset
}
def get_dataset(
cfg_data_split, base_data_dir: str, mode: DatasetMode, **kwargs
):
if "mixed" == cfg_data_split.name:
# assert DatasetMode.TRAIN == mode, "Only training mode supports mixed datasets."
dataset_ls = [
get_dataset(_cfg, base_data_dir, mode, **kwargs)
for _cfg in cfg_data_split.dataset_list
]
return dataset_ls
elif cfg_data_split.name in dataset_name_class_dict.keys():
dataset_class = dataset_name_class_dict[cfg_data_split.name]
dataset = dataset_class(
mode=mode,
filename_ls_path=cfg_data_split.filenames,
dataset_dir=os.path.join(base_data_dir, cfg_data_split.dir),
**cfg_data_split,
**kwargs,
)
else:
raise NotImplementedError
return dataset
def get_eval_dataset(
cfg_data_split, base_data_dir: str, mode: DatasetMode, **kwargs
) -> EvaluateBaseDataset:
if "mixed" == cfg_data_split.name:
assert DatasetMode.TRAIN == mode, "Only training mode supports mixed datasets."
dataset_ls = [
get_dataset(_cfg, base_data_dir, mode, **kwargs)
for _cfg in cfg_data_split.dataset_list
]
return dataset_ls
elif cfg_data_split.name in dataset_name_class_dict.keys():
dataset_class = dataset_name_class_dict[cfg_data_split.name]
dataset = dataset_class(
mode=mode,
filename_ls_path=cfg_data_split.filenames,
dataset_dir=os.path.join(base_data_dir, cfg_data_split.dir),
**cfg_data_split,
**kwargs,
)
else:
raise NotImplementedError
return dataset
|