File size: 12,375 Bytes
d90ba79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import torch
import cv2
import numpy as np
import sys
import torchvision
from PIL import Image
from torchvision.models.optical_flow import Raft_Large_Weights
from torchvision.models.optical_flow import raft_large
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
import matplotlib.pyplot as plt
import torchvision.transforms.functional as F
sys.path.append('./softmax-splatting')
import softsplat
sam_checkpoint = "./sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = "cuda"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
# mask_generator = SamAutomaticMaskGenerator(sam,
# crop_overlap_ratio=0.05,
# box_nms_thresh=0.2,
# points_per_side=32,
# pred_iou_thresh=0.86,
# stability_score_thresh=0.8,
# min_mask_region_area=100,)
# mask_generator = SamAutomaticMaskGenerator(sam)
mask_generator = SamAutomaticMaskGenerator(sam,
# box_nms_thresh=0.5,
# crop_overlap_ratio=0.75,
# min_mask_region_area=200,
)
def get_mask(img_path):
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
masks = mask_generator.generate(image)
return masks
def get_mask_from_array(arr):
return mask_generator.generate(arr)
# depth model
import cv2
import torch
import urllib.request
import matplotlib.pyplot as plt
# potentially downgrade this. just need rough depths. benchmark this
# model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed)
# #model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed)
# #model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed)
#
# # midas = torch.hub.load("intel-isl/MiDaS", model_type)
# midas = torch.hub.load("/sensei-fs/users/halzayer/collage2photo/model_cache/intel-isl_MiDaS_master", model_type, source='local')
#
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# midas.to(device)
# midas.eval()
#
# # midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
# midas_transforms = torch.hub.load("/sensei-fs/users/halzayer/collage2photo/model_cache/intel-isl_MiDaS_master", "transforms", source='local')
#
# if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
# depth_transform = midas_transforms.dpt_transform
# else:
# depth_transform = midas_transforms.small_transform
from dpt import DepthAnythingV2
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
depth_anything = DepthAnythingV2(**model_configs['vitl'])
depth_anything.load_state_dict(torch.load(f'/home/aiops/wangzh/Depth-Anything-V2/checkpoints/depth_anything_v2_vitl.pth', map_location='cpu'))
depth_anything = depth_anything.to(device).eval()
# img_path = '/sensei-fs/users/halzayer/valid/JPEGImages/45597680/00005.jpg'
def get_depth(img_path):
img = cv2.imread(img_path)
with torch.no_grad():
depth = depth_anything.infer_image(img, 518)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
prediction = torch.nn.functional.interpolate(
depth.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu()
return output
def get_depth_from_array(img):
input_batch = img.to(device)
with torch.no_grad():
depth = depth_anything.infer_image(input_batch, 518)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
prediction = torch.nn.functional.interpolate(
depth.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu()
return output
def load_image(img_path):
img1_names = [img_path]
img1_pil = [Image.open(fn) for fn in img1_names]
img1_frames = [torchvision.transforms.functional.pil_to_tensor(fn) for fn in img1_pil]
img1_batch = torch.stack(img1_frames)
return img1_batch
weights = Raft_Large_Weights.DEFAULT
transforms = weights.transforms()
device = "cuda" if torch.cuda.is_available() else "cpu"
model = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).to(device)
model = model.eval()
print('created model')
def preprocess(img1_batch, img2_batch, size=[520,960], transform_batch=True):
img1_batch = F.resize(img1_batch, size=size, antialias=False)
img2_batch = F.resize(img2_batch, size=size, antialias=False)
if transform_batch:
return transforms(img1_batch, img2_batch)
else:
return img1_batch, img2_batch
def compute_flow(img_path_1, img_path_2):
img1_batch_og, img2_batch_og = load_image(img_path_1), load_image(img_path_2)
B, C, H, W = img1_batch_og.shape
img1_batch, img2_batch = preprocess(img1_batch_og, img2_batch_og, transform_batch=False)
img1_batch_t, img2_batch_t = transforms(img1_batch, img2_batch)
# If you can, run this example on a GPU, it will be a lot faster.
with torch.no_grad():
list_of_flows = model(img1_batch_t.to(device), img2_batch_t.to(device))
predicted_flows = list_of_flows[-1]
# flows.append(predicted_flows)
resized_flow = F.resize(predicted_flows, size=(H, W), antialias=False)
_, _, flow_H, flow_W = predicted_flows.shape
resized_flow[:,0] *= (W / flow_W)
resized_flow[:,1] *= (H / flow_H)
return resized_flow.detach().cpu().squeeze()
def compute_flow_from_tensors(img1_batch_og, img2_batch_og):
if len(img1_batch_og.shape) < 4:
img1_batch_og = img1_batch_og.unsqueeze(0)
if len(img2_batch_og.shape) < 4:
img2_batch_og = img2_batch_og.unsqueeze(0)
B, C, H, W = img1_batch_og.shape
img1_batch, img2_batch = preprocess(img1_batch_og, img2_batch_og, transform_batch=False)
img1_batch_t, img2_batch_t = transforms(img1_batch, img2_batch)
# If you can, run this example on a GPU, it will be a lot faster.
with torch.no_grad():
list_of_flows = model(img1_batch_t.to(device), img2_batch_t.to(device))
predicted_flows = list_of_flows[-1]
# flows.append(predicted_flows)
resized_flow = F.resize(predicted_flows, size=(H, W), antialias=False)
_, _, flow_H, flow_W = predicted_flows.shape
resized_flow[:,0] *= (W / flow_W)
resized_flow[:,1] *= (H / flow_H)
return resized_flow.detach().cpu().squeeze()
# import run
backwarp_tenGrid = {}
def backwarp(tenIn, tenFlow):
if str(tenFlow.shape) not in backwarp_tenGrid:
tenHor = torch.linspace(start=-1.0, end=1.0, steps=tenFlow.shape[3], dtype=tenFlow.dtype, device=tenFlow.device).view(1, 1, 1, -1).repeat(1, 1, tenFlow.shape[2], 1)
tenVer = torch.linspace(start=-1.0, end=1.0, steps=tenFlow.shape[2], dtype=tenFlow.dtype, device=tenFlow.device).view(1, 1, -1, 1).repeat(1, 1, 1, tenFlow.shape[3])
backwarp_tenGrid[str(tenFlow.shape)] = torch.cat([tenHor, tenVer], 1).cuda()
# end
tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenIn.shape[3] - 1.0) / 2.0), tenFlow[:, 1:2, :, :] / ((tenIn.shape[2] - 1.0) / 2.0)], 1)
return torch.nn.functional.grid_sample(input=tenIn, grid=(backwarp_tenGrid[str(tenFlow.shape)] + tenFlow).permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros', align_corners=True)
torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance
##########################################################
def forward_splt(src, tgt, flow, partial=False):
tenTwo = tgt.unsqueeze(0).cuda() #torch.FloatTensor(numpy.ascontiguousarray(cv2.imread(filename='./images/one.png', flags=-1).transpose(2, 0, 1)[None, :, :, :].astype(numpy.float32) * (1.0 / 255.0))).cuda()
tenOne = src.unsqueeze(0).cuda() #torch.FloatTensor(numpy.ascontiguousarray(cv2.imread(filename='./images/two.png', flags=-1).transpose(2, 0, 1)[None, :, :, :].astype(numpy.float32) * (1.0 / 255.0))).cuda()
tenFlow = flow.unsqueeze(0).cuda() #torch.FloatTensor(numpy.ascontiguousarray(run.read_flo('./images/flow.flo').transpose(2, 0, 1)[None, :, :, :])).cuda()
if not partial:
tenMetric = torch.nn.functional.l1_loss(input=tenOne, target=backwarp(tenIn=tenTwo, tenFlow=tenFlow), reduction='none').mean([1], True)
else:
tenMetric = torch.nn.functional.l1_loss(input=tenOne[:,:3], target=backwarp(tenIn=tenTwo[:,:3], tenFlow=tenFlow[:,:3]), reduction='none').mean([1], True)
# for intTime, fltTime in enumerate(np.linspace(0.0, 1.0, 11).tolist()):
tenSoftmax = softsplat.softsplat(tenIn=tenOne, tenFlow=tenFlow , tenMetric=(-20.0 * tenMetric).clip(-20.0, 20.0), strMode='soft') # -20.0 is a hyperparameter, called 'alpha' in the paper, that could be learned using a torch.Parameter
return tenSoftmax.cpu()
def aggregate_frames(frames, pairwise_flows=None, agg_flow=None):
if pairwise_flows is None:
# store pairwise flows
pairwise_flows = []
if agg_flow is None:
start_idx = 0
else:
start_idx = len(pairwise_flows)
og_image = frames[start_idx]
prev_frame = og_image
for i in range(start_idx, len(frames)-1):
tgt_frame = frames[i+1]
if i < len(pairwise_flows):
flow = pairwise_flows[i]
else:
flow = compute_flow_from_tensors(prev_frame, tgt_frame)
pairwise_flows.append(flow.clone())
_, H, W = flow.shape
B=1
xx = torch.arange(0, W).view(1,-1).repeat(H,1)
yy = torch.arange(0, H).view(-1,1).repeat(1,W)
xx = xx.view(1,1,H,W).repeat(B,1,1,1)
yy = yy.view(1,1,H,W).repeat(B,1,1,1)
grid = torch.cat((xx,yy),1).float()
flow = flow.unsqueeze(0)
if agg_flow is None:
agg_flow = torch.zeros_like(flow)
vgrid = grid + agg_flow
vgrid[:,0,:,:] = 2.0*vgrid[:,0,:,:].clone() / max(W-1,1) - 1
vgrid[:,1,:,:] = 2.0*vgrid[:,1,:,:].clone() / max(H-1,1) - 1
flow_out = torch.nn.functional.grid_sample(flow, vgrid.permute(0,2,3,1), 'nearest')
agg_flow += flow_out
# mask = forward_splt(torch.ones_like(og_image), torch.ones_like(og_image), agg_flow.squeeze()).squeeze()
# blur_t = torchvision.transforms.GaussianBlur(kernel_size=(25,25), sigma=5.0)
# warping_mask = (blur_t(mask)[0:1] > 0.8)
# masks.append(warping_mask)
prev_frame = tgt_frame
return agg_flow, pairwise_flows #og_splatted_img, agg_flow, actual_warped_mask
def forward_warp(src_frame, tgt_frame, flow, grid=None, alpha_mask=None):
if alpha_mask is None:
alpha_mask = torch.ones_like(src_frame[:1])
if grid is not None:
src_list = [src_frame, grid, alpha_mask]
tgt_list = [tgt_frame, grid, alpha_mask]
else:
src_list = [src_frame, alpha_mask]
tgt_list = [tgt_frame, alpha_mask]
og_image_padded = torch.concat(src_list, dim=0)
tgt_frame_padded = torch.concat(tgt_list, dim=0)
og_splatted_img = forward_splt(og_image_padded, tgt_frame_padded, flow.squeeze(), partial=True).squeeze()
# print('og splatted image shape')
# grid_transformed = og_splatted_img[3:-1]
# print('grid transformed shape', grid_transformed)
# grid *= grid_size
# grid_transformed *= grid_size
actual_warped_mask = og_splatted_img[-1:]
splatted_rgb_grid = og_splatted_img[:-1]
return splatted_rgb_grid, actual_warped_mask |