File size: 13,523 Bytes
d90ba79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# Copyright 2024 Adobe. All rights reserved.
#%%
import numpy as np
import torchvision
import cv2
import tqdm
import torchvision.transforms.functional as F
from PIL import Image
from torchvision.utils import save_image
import time
import os
import pathlib
from torch.utils.data import DataLoader
# %matplotlib inline
from kornia.filters.median import MedianBlur
median_filter = MedianBlur(kernel_size=(15,15))
from moments_dataset import MomentsDataset
try:
from processing_utils import aggregate_frames
import processing_utils
except Exception as e:
print(e)
print('process failed')
exit()
import torch
# %%
def load_image(img_path, resize_size=None,crop_size=None):
img1_pil = Image.open(img_path)
img1_frames = torchvision.transforms.functional.pil_to_tensor(img1_pil)
if resize_size:
img1_frames = torchvision.transforms.functional.resize(img1_frames, resize_size)
if crop_size:
img1_frames = torchvision.transforms.functional.center_crop(img1_frames, crop_size)
img1_batch = torch.unsqueeze(img1_frames, dim=0)
return img1_batch
def get_grid(size):
y = np.repeat(np.arange(size)[None, ...], size)
y = y.reshape(size, size)
x = y.transpose()
out = np.stack([y,x], -1)
return out
def collage_from_frames(frames_t):
# decide forward or backward
if np.random.randint(0, 2) == 0:
# flip
frames_t = frames_t.flip(0)
# decide how deep you would go
tgt_idx_guess = np.random.randint(1, min(len(frames_t), 20))
tgt_idx = 1
pairwise_flows = []
flow = None
init_time = time.time()
unsmoothed_agg = None
for cur_idx in range(1, tgt_idx_guess+1):
# cur_idx = i+1
cur_flow, pairwise_flows = aggregate_frames(frames_t[:cur_idx+1] , pairwise_flows, unsmoothed_agg) # passing pairwise flows for efficiency
unsmoothed_agg = cur_flow.clone()
agg_cur_flow = median_filter(cur_flow)
flow_norm = torch.norm(agg_cur_flow.squeeze(), dim=0).flatten()
# flow_10 = np.percentile(flow_norm.cpu().numpy(), 10)
flow_90 = np.percentile(flow_norm.cpu().numpy(), 90)
# flow_10 = np.percentile(flow_norm.cpu().numpy(), 10)
flow_90 = np.percentile(flow_norm.cpu().numpy(), 90)
flow_95 = np.percentile(flow_norm.cpu().numpy(), 95)
if cur_idx == 5: # if still small flow then drop
if flow_95 < 20.0:
# no motion in the frame. skip
print('flow is tiny :(')
return None
if cur_idx == tgt_idx_guess-1: # if still small flow then drop
if flow_95 < 50.0:
# no motion in the frame. skip
print('flow is tiny :(')
return None
if flow is None: # means first iter
if flow_90 < 1.0:
# no motion in the frame. skip
return None
flow = agg_cur_flow
if flow_90 <= 300: # maybe should increase this part
# update idx
tgt_idx = cur_idx
flow = agg_cur_flow
else:
break
final_time = time.time()
print('time guessing idx', final_time - init_time)
_, flow_warping_mask = processing_utils.forward_warp(frames_t[0], frames_t[tgt_idx], flow, grid=None, alpha_mask=None)
flow_warping_mask = flow_warping_mask.squeeze().numpy() > 0.5
if np.mean(flow_warping_mask) < 0.6:
return
src_array = frames_t[0].moveaxis(0, -1).cpu().numpy() * 1.0
init_time = time.time()
depth = get_depth_from_array(frames_t[0])
finish_time = time.time()
print('time getting depth', finish_time - init_time)
# flow, pairwise_flows = aggregate_frames(frames_t)
# agg_flow = median_filter(flow)
src_array_uint = src_array * 255.0
src_array_uint = src_array_uint.astype(np.uint8)
segments = processing_utils.mask_generator.generate(src_array_uint)
size = src_array.shape[1]
grid_np = get_grid(size).astype(np.float16) / size # 512 x 512 x 2get
grid_t = torch.tensor(grid_np).moveaxis(-1, 0) # 512 x 512 x 2
collage, canvas_alpha, lost_alpha = collage_warp(src_array, flow.squeeze(), depth, segments, grid_array=grid_np)
lost_alpha_t = torch.tensor(lost_alpha).squeeze().unsqueeze(0)
warping_alpha = (lost_alpha_t < 0.5).float()
rgb_grid_splatted, actual_warped_mask = processing_utils.forward_warp(frames_t[0], frames_t[tgt_idx], flow, grid=grid_t, alpha_mask=warping_alpha)
# basic blending now
# print('rgb grid splatted', rgb_grid_splatted.shape)
warped_src = (rgb_grid_splatted * actual_warped_mask).moveaxis(0, -1).cpu().numpy()
canvas_alpha_mask = canvas_alpha == 0.0
collage_mask = canvas_alpha.squeeze() + actual_warped_mask.squeeze().cpu().numpy()
collage_mask = collage_mask > 0.5
composite_grid = warped_src * canvas_alpha_mask + collage
rgb_grid_splatted_np = rgb_grid_splatted.moveaxis(0, -1).cpu().numpy()
return frames_t[0], frames_t[tgt_idx], rgb_grid_splatted_np, composite_grid, flow_warping_mask, collage_mask
def collage_warp(rgb_array, flow, depth, segments, grid_array):
avg_depths = []
avg_flows = []
# src_array = src_array.moveaxis(-1, 0).cpu().numpy() #np.array(Image.open(src_path).convert('RGB')) / 255.0
src_array = np.concatenate([rgb_array, grid_array], axis=-1)
canvas = np.zeros_like(src_array)
canvas_alpha = np.zeros_like(canvas[...,-1:]).astype(float)
lost_regions = np.zeros_like(canvas[...,-1:]).astype(float)
z_buffer = np.ones_like(depth)[..., None] * -1.0
unsqueezed_depth = depth[..., None]
affine_transforms = []
filtered_segments = []
for segment in segments:
if segment['area'] > 300:
filtered_segments.append(segment)
for segment in filtered_segments:
seg_mask = segment['segmentation']
avg_flow = torch.mean(flow[:, seg_mask],dim=1)
avg_flows.append(avg_flow)
# median depth (conversion from disparity)
avg_depth = torch.median(1.0 / (depth[seg_mask] + 1e-6))
avg_depths.append(avg_depth)
all_y, all_x = np.nonzero(segment['segmentation'])
rand_indices = np.random.randint(0, len(all_y), size=50)
rand_x = [all_x[i] for i in rand_indices]
rand_y = [all_y[i] for i in rand_indices]
src_pairs = [(x, y) for x, y in zip(rand_x, rand_y)]
# tgt_pairs = [(x + w, y) for x, y in src_pairs]
tgt_pairs = []
# print('estimating affine') # TODO this can be faster
for i in range(len(src_pairs)):
x, y = src_pairs[i]
dx, dy = flow[:, y, x]
tgt_pairs.append((x+dx, y+dy))
# affine_trans, inliers = cv2.estimateAffine2D(np.array(src_pairs).astype(np.float32), np.array(tgt_pairs).astype(np.float32))
affine_trans, inliers = cv2.estimateAffinePartial2D(np.array(src_pairs).astype(np.float32), np.array(tgt_pairs).astype(np.float32))
# print('num inliers', np.sum(inliers))
# # print('num inliers', np.sum(inliers))
affine_transforms.append(affine_trans)
depth_sorted_indices = np.arange(len(avg_depths))
depth_sorted_indices = sorted(depth_sorted_indices, key=lambda x: avg_depths[x])
# sorted_masks = []
# print('warping stuff')
for idx in depth_sorted_indices:
# sorted_masks.append(mask[idx])
alpha_mask = filtered_segments[idx]['segmentation'][..., None] * (lost_regions < 0.5).astype(float)
src_rgba = np.concatenate([src_array, alpha_mask, unsqueezed_depth], axis=-1)
warp_dst = cv2.warpAffine(src_rgba, affine_transforms[idx], (src_array.shape[1], src_array.shape[0]))
warped_mask = warp_dst[..., -2:-1] # this is warped alpha
warped_depth = warp_dst[..., -1:]
warped_rgb = warp_dst[...,:-2]
good_z_region = warped_depth > z_buffer
warped_mask = np.logical_and(warped_mask > 0.5, good_z_region).astype(float)
kernel = np.ones((3,3), float)
# print('og masked shape', warped_mask.shape)
# warped_mask = cv2.erode(warped_mask,(5,5))[..., None]
# print('eroded masked shape', warped_mask.shape)
canvas_alpha += cv2.erode(warped_mask,kernel)[..., None]
lost_regions += alpha_mask
canvas = canvas * (1.0 - warped_mask) + warped_mask * warped_rgb # TODO check if need to dialate here
z_buffer = z_buffer * (1.0 - warped_mask) + warped_mask * warped_depth # TODO check if need to dialate here # print('max lost region', np.max(lost_regions))
return canvas, canvas_alpha, lost_regions
def get_depth_from_array(img_t):
img_arr = img_t.moveaxis(0, -1).cpu().numpy() * 1.0
# print(img_arr.shape)
img_arr *= 255.0
img_arr = img_arr.astype(np.uint8)
input_batch = processing_utils.depth_transform(img_arr).cuda()
with torch.no_grad():
prediction = processing_utils.midas(input_batch)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img_arr.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu()
return output
# %%
def main():
print('starting main')
video_folder = './example_videos'
save_dir = pathlib.Path('./processed_data')
process_video_folder(video_folder, save_dir)
def process_video_folder(video_folder, save_dir):
all_counter = 0
success_counter = 0
# save_folder = pathlib.Path('/dev/shm/processed')
# save_dir = save_folder / foldername #pathlib.Path('/sensei-fs/users/halzayer/collage2photo/testing_partitioning_dilate_extreme')
os.makedirs(save_dir, exist_ok=True)
dataset = MomentsDataset(videos_folder=video_folder, num_frames=20, samples_per_video=5)
batch_size = 4
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
with torch.no_grad():
for i, batch in tqdm.tqdm(enumerate(dataloader), total=len(dataset)//batch_size):
frames_to_visualize = batch["frames"]
bs = frames_to_visualize.shape[0]
for j in range(bs):
frames = frames_to_visualize[j]
caption = batch["caption"][j]
collage_init_time = time.time()
out = collage_from_frames(frames)
collage_finish_time = time.time()
print('collage processing time', collage_finish_time - collage_init_time)
all_counter += 1
if out is not None:
src_image, tgt_image, splatted, collage, flow_mask, collage_mask = out
splatted_rgb = splatted[...,:3]
splatted_grid = splatted[...,3:].astype(np.float16)
collage_rgb = collage[...,:3]
collage_grid = collage[...,3:].astype(np.float16)
success_counter += 1
else:
continue
id_str = f'{success_counter:08d}'
src_path = str(save_dir / f'src_{id_str}.png')
tgt_path = str(save_dir / f'tgt_{id_str}.png')
flow_warped_path = str(save_dir / f'flow_warped_{id_str}.png')
composite_path = str(save_dir / f'composite_{id_str}.png')
flow_mask_path = str(save_dir / f'flow_mask_{id_str}.png')
composite_mask_path = str(save_dir / f'composite_mask_{id_str}.png')
flow_grid_path = str(save_dir / f'flow_warped_grid_{id_str}.npy')
composite_grid_path = str(save_dir / f'composite_grid_{id_str}.npy')
save_image(src_image, src_path)
save_image(tgt_image, tgt_path)
collage_pil = Image.fromarray((collage_rgb * 255).astype(np.uint8))
collage_pil.save(composite_path)
splatted_pil = Image.fromarray((splatted_rgb * 255).astype(np.uint8))
splatted_pil.save(flow_warped_path)
flow_mask_pil = Image.fromarray((flow_mask.astype(float) * 255).astype(np.uint8))
flow_mask_pil.save(flow_mask_path)
composite_mask_pil = Image.fromarray((collage_mask.astype(float) * 255).astype(np.uint8))
composite_mask_pil.save(composite_mask_path)
splatted_grid_t = torch.tensor(splatted_grid).moveaxis(-1, 0)
splatted_grid_resized = torchvision.transforms.functional.resize(splatted_grid_t, (64,64))
collage_grid_t = torch.tensor(collage_grid).moveaxis(-1, 0)
collage_grid_resized = torchvision.transforms.functional.resize(collage_grid_t, (64,64))
np.save(flow_grid_path, splatted_grid_resized.cpu().numpy())
np.save(composite_grid_path, collage_grid_resized.cpu().numpy())
del out
del splatted_grid
del collage_grid
del frames
del frames_to_visualize
#%%
if __name__ == '__main__':
try:
main()
except Exception as e:
print(e)
print('process failed')
|