[**中文**](./README_ZH.md) | [**English**](./README.md)

TCMChat

# TCMChat: A Generative Large Language Model for Traditional Chinese Medicine [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese/blob/main/LICENSE) [![Python 3.10.12](https://img.shields.io/badge/python-3.10.12-blue.svg)](https://www.python.org/downloads/release/python-390/) ## News [2024-5-17] Open source model weight on HuggingFace. ## Application ### Install ``` git clone https://github.com/daiyizheng/TCMChat cd TCMChat ``` First install the dependency package. python environment 3.10+ is recommended. ``` pip install -r requirements.txt ``` ### Weights download - [TCMChat](https://huggingface.co/daiyizheng/TCMChat): QA and recommendation of TCM knowledge based on baichuan2-7B-Chat. ### Inference #### Command line ``` python cli_infer.py \ --model_name_or_path /your/model/path \ --model_type chat ``` #### Web demo ``` python gradio_demo.py ``` We provide an online tool:[https://xomics.com.cn/tcmchat](https://xomics.com.cn/tcmchat) ### Retrain #### Dataset Download - [Pretrain dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/data/pretrain) - [SFT dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/data/sft) - [Benchmark dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/data/evaluate) > Note: Currently only sample data is provided. In the near future, we will fully open source the original data. #### Pre-training ```shell train_type="pretrain" train_file="data/pretrain/train" validation_file="data/pretrain/test" block_size="1024" deepspeed_dir="data/resources/deepspeed_zero_stage2_config.yml" num_train_epochs="2" export WANDB_PROJECT="TCM-${train_type}" date_time=$(date +"%Y%m%d%H%M%S") run_name="${date_time}_${block_size}" model_name_or_path="your/path/Baichuan2-7B-Chat" output_dir="output/${train_type}/${date_time}_${block_size}" accelerate launch --config_file ${deepspeed_dir} src/pretraining.py \ --model_name_or_path ${model_name_or_path} \ --train_file ${train_file} \ --validation_file ${validation_file} \ --preprocessing_num_workers 20 \ --cache_dir ./cache \ --block_size ${block_size} \ --seed 42 \ --do_train \ --do_eval \ --per_device_train_batch_size 32 \ --per_device_eval_batch_size 32 \ --num_train_epochs ${num_train_epochs} \ --low_cpu_mem_usage True \ --torch_dtype bfloat16 \ --bf16 \ --ddp_find_unused_parameters False \ --gradient_checkpointing True \ --learning_rate 2e-4 \ --warmup_ratio 0.05 \ --weight_decay 0.01 \ --report_to wandb \ --run_name ${run_name} \ --logging_dir logs \ --logging_strategy steps \ --logging_steps 10 \ --eval_steps 50 \ --evaluation_strategy steps \ --save_steps 100 \ --save_strategy steps \ --save_total_limit 13 \ --output_dir ${output_dir} \ --overwrite_output_dir ``` #### Fine-tuning ```shell train_type="SFT" model_max_length="1024" date_time=$(date +"%Y%m%d%H%M%S") data_path="data/sft/sample_train_baichuan_data.json" model_name_or_path="your/path/pretrain" deepspeed_dir="data/resources/deepspeed_zero_stage2_confi_baichuan2.json" export WANDB_PROJECT="TCM-${train_type}" run_name="${train_type}_${date_time}" output_dir="output/${train_type}/${date_time}_${model_max_length}" deepspeed --hostfile="" src/fine-tune.py \ --report_to "wandb" \ --run_name ${run_name} \ --data_path ${data_path} \ --model_name_or_path ${model_name_or_path} \ --output_dir ${output_dir} \ --model_max_length ${model_max_length} \ --num_train_epochs 4 \ --per_device_train_batch_size 16 \ --gradient_accumulation_steps 1 \ --save_strategy epoch \ --learning_rate 2e-5 \ --lr_scheduler_type constant \ --adam_beta1 0.9 \ --adam_beta2 0.98 \ --adam_epsilon 1e-8 \ --max_grad_norm 1.0 \ --weight_decay 1e-4 \ --warmup_ratio 0.0 \ --logging_steps 1 \ --gradient_checkpointing True \ --deepspeed ${deepspeed_dir} \ --bf16 True \ --tf32 True ``` ### Training details Please refer to the experimental section of the paper for instructions.