File size: 9,891 Bytes
46904af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# -*- coding: utf-8 -*-

import re
import six
import unicodedata
import torch
import rouge
import numpy as np
import random
# from fengshen.examples.pegasus.pegasus_utils import text_segmentate
import sys

sys.path.append('../../../')

rouge = rouge.Rouge()


is_py2 = six.PY2

if not is_py2:
    basestring = str


def _is_chinese_char(cp):
    """Checks whether CP is the codepoint of a CJK character."""
    # This defines a "chinese character" as anything in the CJK Unicode block:
    #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
    #
    # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
    # despite its name. The modern Korean Hangul alphabet is a different block,
    # as is Japanese Hiragana and Katakana. Those alphabets are used to write
    # space-separated words, so they are not treated specially and handled
    # like the all of the other languages.
    if ((cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF)
            or (cp >= 0x20000 and cp <= 0x2A6DF)
            or (cp >= 0x2A700 and cp <= 0x2B73F)
            or (cp >= 0x2B740 and cp <= 0x2B81F)
            or (cp >= 0x2B820 and cp <= 0x2CEAF)
            or (cp >= 0xF900 and cp <= 0xFAFF)
            or (cp >= 0x2F800 and cp <= 0x2FA1F)):
        return True

    return False


def _is_whitespace(char):
    """Checks whether `char` is a whitespace character."""
    # \t, \n, and \r are technically control characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False


def _is_control(char):
    """Checks whether `char` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat.startswith("C"):
        return True
    return False


def _is_punctuation(char):
    """Checks whether `char` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (
            cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False


def is_string(s):
    """判断是否是字符串
    """
    return isinstance(s, basestring)


def is_stopwords(word, stopwords):
    if word in stopwords:
        return True
    else:
        return False


def text_segmentate(text):
    en_seg_pattern = '((?:\\!|\\?|\\.|\\n)+(?:\\s)+)'
    ch_seg_pattern = '((?:?|!|。|\\n)+)'
    try:
        text = re.sub(en_seg_pattern, r'\1[SEP]', text)
        # print("sub text: ", text)
    except Exception as e:
        print("input: ", text)
        raise e
    text = re.sub(ch_seg_pattern, r'\1[SEP]', text)
    # print("sub ch text: ", text)
    text_list = text.split("[SEP]")
    text_list = list(filter(lambda x: len(x) != 0, text_list))
    return text_list


def load_stopwords(stopwords_path):
    stopwords_dict = {}
    with open(stopwords_path, "r") as rf:
        for line in rf:
            line = line.strip()
            if line not in stopwords_dict:
                stopwords_dict[line] = 0
            else:
                pass
    return stopwords_dict


def text_process(text, max_length):
    """分割文本
    """
    texts = text_segmentate(text)

    result, length = [], 0
    for text in texts:
        if length + len(text) > max_length * 1.3 and len(result) >= 3:
            yield result
            result, length = [], 0
        result.append(text)
        length += len(text)
    if result and len(result) >= 3:
        yield result


def text_process_split_long_content(text, max_length):
    """分割长文本
    """
    texts = text_segmentate(text)

    result, sentence_num = "", 0
    for text in texts:
        if len(text) > 500:
            if len(result) > 300 and sentence_num >= 3:
                yield result
                result, sentence_num = "", 0
            else:
                result, sentence_num = "", 0
                continue
        else:
            if len(result) + len(text) > max_length * 1.1 and sentence_num >= 3:
                yield result
                result, sentence_num = "", 0
            result += text
            sentence_num += 1

    if result and sentence_num >= 3:
        yield result


def gather_join(texts, idxs):
    """取出对应的text,然后拼接起来
    """
    return ''.join([texts[i] for i in idxs])


def gather_join_f1(texts_token, idsx):
    join_texts = []
    for id in idsx:
        join_texts.extend(texts_token[id])
    return join_texts


def compute_rouge(source, target):
    """计算rouge-1、rouge-2、rouge-l
    """
    source, target = ' '.join(source), ' '.join(target)
    try:
        scores = rouge.get_scores(hyps=source, refs=target)
        return {
            'rouge-1': scores[0]['rouge-1']['f'],
            'rouge-2': scores[0]['rouge-2']['f'],
            'rouge-l': scores[0]['rouge-l']['f'],
        }
    except ValueError:
        return {
            'rouge-1': 0.0,
            'rouge-2': 0.0,
            'rouge-l': 0.0,
        }


def remove_stopwords(texts, stopwords_dict):
    for i, text in enumerate(texts):
        texts[i] = list(filter(lambda x: x not in stopwords_dict, text))
    return texts


def pseudo_summary_f1(texts,
                      stopwords,
                      tokenizer,
                      max_length,
                      rouge_strategy="rouge-l"):
    """构建伪标签摘要数据集
    """
    summary_rate = 0.25
    max_length = max_length - 1
    texts_tokens = []
    sentece_idxs_vec = []
    for text in texts:
        if len(texts) == 0:
            continue
        try:
            ids = tokenizer.encode(text.strip())[:-1]
        except ValueError:
            print("error, input : ", text)
            raise ValueError
        sentece_idxs_vec.append(ids)
        tokens = [tokenizer._convert_id_to_token(token) for token in ids]
        texts_tokens.append(tokens)

    texts_tokens_rm = remove_stopwords(texts_tokens, stopwords)
    source_idxs, target_idxs = list(range(len(texts))), []

    assert len(texts_tokens) == len(texts)
    # truncate_index = 0
    while True:
        sims = []
        for i in source_idxs:
            new_source_idxs = [j for j in source_idxs if j != i]
            new_target_idxs = sorted(target_idxs + [i])
            new_source = gather_join_f1(texts_tokens_rm, new_source_idxs)
            new_target = gather_join_f1(texts_tokens_rm, new_target_idxs)
            sim = compute_rouge(new_source, new_target)[rouge_strategy]
            sims.append(sim)
        new_idx = source_idxs[np.argmax(sims)]
        del sims
        source_idxs.remove(new_idx)
        target_idxs = sorted(target_idxs + [new_idx])
        source = gather_join(texts, source_idxs)
        target = gather_join(texts, target_idxs)
        try:
            if (len(source_idxs) == 1
                    or 1.0 * len(target) / len(source) > summary_rate):
                break
        except ZeroDivisionError as e:
            print(e.meesage)
            print(texts)
            print("source: ", source)
            print("target: ", target)

    if len(source) < len(target):
        source, target = target, source
        source_idxs, target_idxs = target_idxs, source_idxs

    return sentece_idxs_vec, source, target, source_idxs, target_idxs


def get_input_mask(sentence_id_vec, indexs):
    target_idxs = []
    input_idxs = []
    kMaskSentenceTokenId = 2
    kEosTokenId = 1
    mask_sentence_options_cumulative_prob = [0.9, 0.9, 1, 1]
    for index in indexs:
        target_idxs.extend(sentence_id_vec[index])
        choice = random.uniform(0, 1)
        if choice < mask_sentence_options_cumulative_prob[0]:
            # print("mask index: ", index)
            sentence_id_vec[index] = [kMaskSentenceTokenId]
        elif choice < mask_sentence_options_cumulative_prob[1]:
            # print("replace index: ", index)
            replace_id = random.randint(0, len(sentence_id_vec))
            sentence_id_vec[index] = sentence_id_vec[replace_id]
        elif choice < mask_sentence_options_cumulative_prob[2]:
            pass
        else:
            sentence_id_vec[index] = []

    target_idxs.append(kEosTokenId)
    # print(sentence_id_vec)
    for index, sentence_id in enumerate(sentence_id_vec):
        # print(index, sentence_id)
        if len(sentence_id) == 0:
            continue
        input_idxs.extend(sentence_id_vec[index])

    input_idxs.append(kEosTokenId)
    return input_idxs, target_idxs


def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int,
                       decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


def padding_to_maxlength(ids, max_length, pad_id):
    cur_len = len(ids)
    len_diff = max_length - cur_len
    return ids + [pad_id] * len_diff, [1] * cur_len + [0] * len_diff