Harsh1729 commited on
Commit
3c5c4b3
1 Parent(s): a8a6317

Upload 8 files

Browse files
README.md ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-chat-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: True
207
+ - load_in_4bit: False
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: fp4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float32
215
+
216
+ ### Framework versions
217
+
218
+ - PEFT 0.7.0
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "o_proj",
24
+ "k_proj",
25
+ "up_proj",
26
+ "gate_proj",
27
+ "v_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af657105b97d6b886849a312d279641050398587ad2b625cad5a69de7d44ed11
3
+ size 319876032
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cb5e6d359f0ef7050678c1beb0072db5f592740ae33bb124f01dd0a9fabeef6
3
+ size 160736095
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40fb251bc604d5d24acc8f525528d2d5b0bda81f8f27f9cfc970f4d21e43d6ab
3
+ size 14575
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c55751e8017b497a5d70692c134da1472d6b742a78d5b456c2924b6690ed5497
3
+ size 627
trainer_state.json ADDED
@@ -0,0 +1,3421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6130674481391907,
3
+ "best_model_checkpoint": "./agentinstruct_os_env-filtered_v2-sharegpt-out/checkpoint-560",
4
+ "epoch": 1.9803921568627452,
5
+ "eval_steps": 140,
6
+ "global_step": 560,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2.380952380952381e-05,
14
+ "loss": 0.863,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "eval_loss": 1.0282199382781982,
20
+ "eval_runtime": 198.386,
21
+ "eval_samples_per_second": 2.808,
22
+ "eval_steps_per_second": 0.353,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "learning_rate": 4.761904761904762e-05,
28
+ "loss": 0.8378,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.01,
33
+ "learning_rate": 7.142857142857142e-05,
34
+ "loss": 0.9216,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.01,
39
+ "learning_rate": 9.523809523809524e-05,
40
+ "loss": 0.8635,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.02,
45
+ "learning_rate": 0.00011904761904761905,
46
+ "loss": 0.7866,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.02,
51
+ "learning_rate": 0.00014285714285714284,
52
+ "loss": 0.7888,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.02,
57
+ "learning_rate": 0.00016666666666666666,
58
+ "loss": 0.7994,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.03,
63
+ "learning_rate": 0.00019047619047619048,
64
+ "loss": 0.8029,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.03,
69
+ "learning_rate": 0.00021428571428571427,
70
+ "loss": 0.6334,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.04,
75
+ "learning_rate": 0.0002380952380952381,
76
+ "loss": 0.687,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.04,
81
+ "learning_rate": 0.0002619047619047619,
82
+ "loss": 0.7071,
83
+ "step": 11
84
+ },
85
+ {
86
+ "epoch": 0.04,
87
+ "learning_rate": 0.0002857142857142857,
88
+ "loss": 0.6969,
89
+ "step": 12
90
+ },
91
+ {
92
+ "epoch": 0.05,
93
+ "learning_rate": 0.00030952380952380956,
94
+ "loss": 0.6407,
95
+ "step": 13
96
+ },
97
+ {
98
+ "epoch": 0.05,
99
+ "learning_rate": 0.0003333333333333333,
100
+ "loss": 0.7206,
101
+ "step": 14
102
+ },
103
+ {
104
+ "epoch": 0.05,
105
+ "learning_rate": 0.00035714285714285714,
106
+ "loss": 0.6571,
107
+ "step": 15
108
+ },
109
+ {
110
+ "epoch": 0.06,
111
+ "learning_rate": 0.00038095238095238096,
112
+ "loss": 0.6624,
113
+ "step": 16
114
+ },
115
+ {
116
+ "epoch": 0.06,
117
+ "learning_rate": 0.0004047619047619048,
118
+ "loss": 0.6537,
119
+ "step": 17
120
+ },
121
+ {
122
+ "epoch": 0.06,
123
+ "learning_rate": 0.00042857142857142855,
124
+ "loss": 0.6381,
125
+ "step": 18
126
+ },
127
+ {
128
+ "epoch": 0.07,
129
+ "learning_rate": 0.00045238095238095237,
130
+ "loss": 0.5956,
131
+ "step": 19
132
+ },
133
+ {
134
+ "epoch": 0.07,
135
+ "learning_rate": 0.0004761904761904762,
136
+ "loss": 0.6249,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.07,
141
+ "learning_rate": 0.0005,
142
+ "loss": 0.6368,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.08,
147
+ "learning_rate": 0.00049999575350127,
148
+ "loss": 0.7129,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.08,
153
+ "learning_rate": 0.0004999830141493422,
154
+ "loss": 0.6447,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.09,
159
+ "learning_rate": 0.0004999617823769977,
160
+ "loss": 0.6229,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.09,
165
+ "learning_rate": 0.0004999320589055218,
166
+ "loss": 0.5793,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.09,
171
+ "learning_rate": 0.0004998938447446803,
172
+ "loss": 0.6708,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.1,
177
+ "learning_rate": 0.000499847141192684,
178
+ "loss": 0.5894,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.1,
183
+ "learning_rate": 0.0004997919498361457,
184
+ "loss": 0.6331,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.1,
189
+ "learning_rate": 0.0004997282725500256,
190
+ "loss": 0.6331,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.11,
195
+ "learning_rate": 0.0004996561114975677,
196
+ "loss": 0.6769,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.11,
201
+ "learning_rate": 0.0004995754691302267,
202
+ "loss": 0.6436,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.11,
207
+ "learning_rate": 0.0004994863481875841,
208
+ "loss": 0.6138,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.12,
213
+ "learning_rate": 0.0004993887516972557,
214
+ "loss": 0.6039,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.12,
219
+ "learning_rate": 0.0004992826829747886,
220
+ "loss": 0.7299,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.12,
225
+ "learning_rate": 0.0004991681456235483,
226
+ "loss": 0.6432,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.13,
231
+ "learning_rate": 0.0004990451435345965,
232
+ "loss": 0.6116,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.13,
237
+ "learning_rate": 0.000498913680886559,
238
+ "loss": 0.6346,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.14,
243
+ "learning_rate": 0.0004987737621454833,
244
+ "loss": 0.5927,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.14,
249
+ "learning_rate": 0.0004986253920646877,
250
+ "loss": 0.5812,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.14,
255
+ "learning_rate": 0.0004984685756845991,
256
+ "loss": 0.5937,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.15,
261
+ "learning_rate": 0.0004983033183325818,
262
+ "loss": 0.6622,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 0.15,
267
+ "learning_rate": 0.000498129625622757,
268
+ "loss": 0.5578,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 0.15,
273
+ "learning_rate": 0.0004979475034558115,
274
+ "loss": 0.6567,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 0.16,
279
+ "learning_rate": 0.000497756958018798,
280
+ "loss": 0.5818,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 0.16,
285
+ "learning_rate": 0.0004975579957849238,
286
+ "loss": 0.6331,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 0.16,
291
+ "learning_rate": 0.0004973506235133322,
292
+ "loss": 0.6818,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 0.17,
297
+ "learning_rate": 0.0004971348482488718,
298
+ "loss": 0.6146,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 0.17,
303
+ "learning_rate": 0.0004969106773218577,
304
+ "loss": 0.536,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 0.17,
309
+ "learning_rate": 0.0004966781183478222,
310
+ "loss": 0.5789,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 0.18,
315
+ "learning_rate": 0.0004964371792272566,
316
+ "loss": 0.5943,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.18,
321
+ "learning_rate": 0.0004961878681453422,
322
+ "loss": 0.6709,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 0.19,
327
+ "learning_rate": 0.0004959301935716725,
328
+ "loss": 0.5814,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 0.19,
333
+ "learning_rate": 0.0004956641642599655,
334
+ "loss": 0.6365,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 0.19,
339
+ "learning_rate": 0.0004953897892477664,
340
+ "loss": 0.5948,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 0.2,
345
+ "learning_rate": 0.0004951070778561401,
346
+ "loss": 0.5721,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 0.2,
351
+ "learning_rate": 0.0004948160396893552,
352
+ "loss": 0.6116,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 0.2,
357
+ "learning_rate": 0.0004945166846345576,
358
+ "loss": 0.6379,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 0.21,
363
+ "learning_rate": 0.0004942090228614339,
364
+ "loss": 0.6734,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 0.21,
369
+ "learning_rate": 0.0004938930648218666,
370
+ "loss": 0.593,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 0.21,
375
+ "learning_rate": 0.0004935688212495795,
376
+ "loss": 0.6318,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 0.22,
381
+ "learning_rate": 0.0004932363031597716,
382
+ "loss": 0.6614,
383
+ "step": 61
384
+ },
385
+ {
386
+ "epoch": 0.22,
387
+ "learning_rate": 0.0004928955218487439,
388
+ "loss": 0.5249,
389
+ "step": 62
390
+ },
391
+ {
392
+ "epoch": 0.22,
393
+ "learning_rate": 0.0004925464888935161,
394
+ "loss": 0.6975,
395
+ "step": 63
396
+ },
397
+ {
398
+ "epoch": 0.23,
399
+ "learning_rate": 0.0004921892161514319,
400
+ "loss": 0.6102,
401
+ "step": 64
402
+ },
403
+ {
404
+ "epoch": 0.23,
405
+ "learning_rate": 0.0004918237157597574,
406
+ "loss": 0.6337,
407
+ "step": 65
408
+ },
409
+ {
410
+ "epoch": 0.24,
411
+ "learning_rate": 0.000491450000135268,
412
+ "loss": 0.5722,
413
+ "step": 66
414
+ },
415
+ {
416
+ "epoch": 0.24,
417
+ "learning_rate": 0.0004910680819738274,
418
+ "loss": 0.6372,
419
+ "step": 67
420
+ },
421
+ {
422
+ "epoch": 0.24,
423
+ "learning_rate": 0.000490677974249955,
424
+ "loss": 0.6206,
425
+ "step": 68
426
+ },
427
+ {
428
+ "epoch": 0.25,
429
+ "learning_rate": 0.0004902796902163871,
430
+ "loss": 0.5946,
431
+ "step": 69
432
+ },
433
+ {
434
+ "epoch": 0.25,
435
+ "learning_rate": 0.0004898732434036243,
436
+ "loss": 0.5578,
437
+ "step": 70
438
+ },
439
+ {
440
+ "epoch": 0.25,
441
+ "learning_rate": 0.0004894586476194739,
442
+ "loss": 0.6914,
443
+ "step": 71
444
+ },
445
+ {
446
+ "epoch": 0.26,
447
+ "learning_rate": 0.0004890359169485795,
448
+ "loss": 0.6141,
449
+ "step": 72
450
+ },
451
+ {
452
+ "epoch": 0.26,
453
+ "learning_rate": 0.0004886050657519433,
454
+ "loss": 0.5633,
455
+ "step": 73
456
+ },
457
+ {
458
+ "epoch": 0.26,
459
+ "learning_rate": 0.0004881661086664376,
460
+ "loss": 0.5502,
461
+ "step": 74
462
+ },
463
+ {
464
+ "epoch": 0.27,
465
+ "learning_rate": 0.00048771906060430815,
466
+ "loss": 0.6032,
467
+ "step": 75
468
+ },
469
+ {
470
+ "epoch": 0.27,
471
+ "learning_rate": 0.0004872639367526672,
472
+ "loss": 0.5921,
473
+ "step": 76
474
+ },
475
+ {
476
+ "epoch": 0.27,
477
+ "learning_rate": 0.00048680075257297753,
478
+ "loss": 0.6411,
479
+ "step": 77
480
+ },
481
+ {
482
+ "epoch": 0.28,
483
+ "learning_rate": 0.0004863295238005274,
484
+ "loss": 0.5643,
485
+ "step": 78
486
+ },
487
+ {
488
+ "epoch": 0.28,
489
+ "learning_rate": 0.000485850266443896,
490
+ "loss": 0.5996,
491
+ "step": 79
492
+ },
493
+ {
494
+ "epoch": 0.29,
495
+ "learning_rate": 0.00048536299678440933,
496
+ "loss": 0.6331,
497
+ "step": 80
498
+ },
499
+ {
500
+ "epoch": 0.29,
501
+ "learning_rate": 0.00048486773137558715,
502
+ "loss": 0.6552,
503
+ "step": 81
504
+ },
505
+ {
506
+ "epoch": 0.29,
507
+ "learning_rate": 0.00048436448704258106,
508
+ "loss": 0.5525,
509
+ "step": 82
510
+ },
511
+ {
512
+ "epoch": 0.3,
513
+ "learning_rate": 0.0004838532808816024,
514
+ "loss": 0.6486,
515
+ "step": 83
516
+ },
517
+ {
518
+ "epoch": 0.3,
519
+ "learning_rate": 0.0004833341302593417,
520
+ "loss": 0.5828,
521
+ "step": 84
522
+ },
523
+ {
524
+ "epoch": 0.3,
525
+ "learning_rate": 0.0004828070528123786,
526
+ "loss": 0.5655,
527
+ "step": 85
528
+ },
529
+ {
530
+ "epoch": 0.31,
531
+ "learning_rate": 0.0004822720664465827,
532
+ "loss": 0.6685,
533
+ "step": 86
534
+ },
535
+ {
536
+ "epoch": 0.31,
537
+ "learning_rate": 0.0004817291893365054,
538
+ "loss": 0.5382,
539
+ "step": 87
540
+ },
541
+ {
542
+ "epoch": 0.31,
543
+ "learning_rate": 0.0004811784399247625,
544
+ "loss": 0.5927,
545
+ "step": 88
546
+ },
547
+ {
548
+ "epoch": 0.32,
549
+ "learning_rate": 0.00048061983692140734,
550
+ "loss": 0.5624,
551
+ "step": 89
552
+ },
553
+ {
554
+ "epoch": 0.32,
555
+ "learning_rate": 0.00048005339930329543,
556
+ "loss": 0.5469,
557
+ "step": 90
558
+ },
559
+ {
560
+ "epoch": 0.32,
561
+ "learning_rate": 0.0004794791463134399,
562
+ "loss": 0.5331,
563
+ "step": 91
564
+ },
565
+ {
566
+ "epoch": 0.33,
567
+ "learning_rate": 0.00047889709746035727,
568
+ "loss": 0.6245,
569
+ "step": 92
570
+ },
571
+ {
572
+ "epoch": 0.33,
573
+ "learning_rate": 0.0004783072725174055,
574
+ "loss": 0.5385,
575
+ "step": 93
576
+ },
577
+ {
578
+ "epoch": 0.34,
579
+ "learning_rate": 0.00047770969152211143,
580
+ "loss": 0.5714,
581
+ "step": 94
582
+ },
583
+ {
584
+ "epoch": 0.34,
585
+ "learning_rate": 0.00047710437477549054,
586
+ "loss": 0.5202,
587
+ "step": 95
588
+ },
589
+ {
590
+ "epoch": 0.34,
591
+ "learning_rate": 0.0004764913428413572,
592
+ "loss": 0.5005,
593
+ "step": 96
594
+ },
595
+ {
596
+ "epoch": 0.35,
597
+ "learning_rate": 0.00047587061654562617,
598
+ "loss": 0.5889,
599
+ "step": 97
600
+ },
601
+ {
602
+ "epoch": 0.35,
603
+ "learning_rate": 0.00047524221697560476,
604
+ "loss": 0.4823,
605
+ "step": 98
606
+ },
607
+ {
608
+ "epoch": 0.35,
609
+ "learning_rate": 0.0004746061654792768,
610
+ "loss": 0.5695,
611
+ "step": 99
612
+ },
613
+ {
614
+ "epoch": 0.36,
615
+ "learning_rate": 0.0004739624836645773,
616
+ "loss": 0.5772,
617
+ "step": 100
618
+ },
619
+ {
620
+ "epoch": 0.36,
621
+ "learning_rate": 0.0004733111933986582,
622
+ "loss": 0.5324,
623
+ "step": 101
624
+ },
625
+ {
626
+ "epoch": 0.36,
627
+ "learning_rate": 0.000472652316807146,
628
+ "loss": 0.5866,
629
+ "step": 102
630
+ },
631
+ {
632
+ "epoch": 0.37,
633
+ "learning_rate": 0.0004719858762733894,
634
+ "loss": 0.5702,
635
+ "step": 103
636
+ },
637
+ {
638
+ "epoch": 0.37,
639
+ "learning_rate": 0.0004713118944376995,
640
+ "loss": 0.6104,
641
+ "step": 104
642
+ },
643
+ {
644
+ "epoch": 0.37,
645
+ "learning_rate": 0.0004706303941965803,
646
+ "loss": 0.628,
647
+ "step": 105
648
+ },
649
+ {
650
+ "epoch": 0.38,
651
+ "learning_rate": 0.0004699413987019512,
652
+ "loss": 0.5598,
653
+ "step": 106
654
+ },
655
+ {
656
+ "epoch": 0.38,
657
+ "learning_rate": 0.0004692449313603601,
658
+ "loss": 0.6371,
659
+ "step": 107
660
+ },
661
+ {
662
+ "epoch": 0.39,
663
+ "learning_rate": 0.0004685410158321884,
664
+ "loss": 0.6538,
665
+ "step": 108
666
+ },
667
+ {
668
+ "epoch": 0.39,
669
+ "learning_rate": 0.00046782967603084736,
670
+ "loss": 0.5947,
671
+ "step": 109
672
+ },
673
+ {
674
+ "epoch": 0.39,
675
+ "learning_rate": 0.00046711093612196545,
676
+ "loss": 0.5938,
677
+ "step": 110
678
+ },
679
+ {
680
+ "epoch": 0.4,
681
+ "learning_rate": 0.00046638482052256734,
682
+ "loss": 0.5982,
683
+ "step": 111
684
+ },
685
+ {
686
+ "epoch": 0.4,
687
+ "learning_rate": 0.00046565135390024513,
688
+ "loss": 0.5767,
689
+ "step": 112
690
+ },
691
+ {
692
+ "epoch": 0.4,
693
+ "learning_rate": 0.00046491056117231935,
694
+ "loss": 0.5784,
695
+ "step": 113
696
+ },
697
+ {
698
+ "epoch": 0.41,
699
+ "learning_rate": 0.00046416246750499295,
700
+ "loss": 0.5581,
701
+ "step": 114
702
+ },
703
+ {
704
+ "epoch": 0.41,
705
+ "learning_rate": 0.0004634070983124965,
706
+ "loss": 0.6195,
707
+ "step": 115
708
+ },
709
+ {
710
+ "epoch": 0.41,
711
+ "learning_rate": 0.0004626444792562244,
712
+ "loss": 0.4939,
713
+ "step": 116
714
+ },
715
+ {
716
+ "epoch": 0.42,
717
+ "learning_rate": 0.00046187463624386356,
718
+ "loss": 0.6722,
719
+ "step": 117
720
+ },
721
+ {
722
+ "epoch": 0.42,
723
+ "learning_rate": 0.0004610975954285129,
724
+ "loss": 0.5186,
725
+ "step": 118
726
+ },
727
+ {
728
+ "epoch": 0.42,
729
+ "learning_rate": 0.0004603133832077953,
730
+ "loss": 0.5793,
731
+ "step": 119
732
+ },
733
+ {
734
+ "epoch": 0.43,
735
+ "learning_rate": 0.00045952202622296013,
736
+ "loss": 0.601,
737
+ "step": 120
738
+ },
739
+ {
740
+ "epoch": 0.43,
741
+ "learning_rate": 0.00045872355135797904,
742
+ "loss": 0.5567,
743
+ "step": 121
744
+ },
745
+ {
746
+ "epoch": 0.43,
747
+ "learning_rate": 0.00045791798573863185,
748
+ "loss": 0.7046,
749
+ "step": 122
750
+ },
751
+ {
752
+ "epoch": 0.44,
753
+ "learning_rate": 0.0004571053567315857,
754
+ "loss": 0.5256,
755
+ "step": 123
756
+ },
757
+ {
758
+ "epoch": 0.44,
759
+ "learning_rate": 0.00045628569194346494,
760
+ "loss": 0.5995,
761
+ "step": 124
762
+ },
763
+ {
764
+ "epoch": 0.45,
765
+ "learning_rate": 0.00045545901921991333,
766
+ "loss": 0.5806,
767
+ "step": 125
768
+ },
769
+ {
770
+ "epoch": 0.45,
771
+ "learning_rate": 0.00045462536664464835,
772
+ "loss": 0.5754,
773
+ "step": 126
774
+ },
775
+ {
776
+ "epoch": 0.45,
777
+ "learning_rate": 0.0004537847625385069,
778
+ "loss": 0.5708,
779
+ "step": 127
780
+ },
781
+ {
782
+ "epoch": 0.46,
783
+ "learning_rate": 0.0004529372354584829,
784
+ "loss": 0.4903,
785
+ "step": 128
786
+ },
787
+ {
788
+ "epoch": 0.46,
789
+ "learning_rate": 0.00045208281419675784,
790
+ "loss": 0.6224,
791
+ "step": 129
792
+ },
793
+ {
794
+ "epoch": 0.46,
795
+ "learning_rate": 0.00045122152777972213,
796
+ "loss": 0.541,
797
+ "step": 130
798
+ },
799
+ {
800
+ "epoch": 0.47,
801
+ "learning_rate": 0.00045035340546698916,
802
+ "loss": 0.5375,
803
+ "step": 131
804
+ },
805
+ {
806
+ "epoch": 0.47,
807
+ "learning_rate": 0.0004494784767504013,
808
+ "loss": 0.6203,
809
+ "step": 132
810
+ },
811
+ {
812
+ "epoch": 0.47,
813
+ "learning_rate": 0.0004485967713530281,
814
+ "loss": 0.4937,
815
+ "step": 133
816
+ },
817
+ {
818
+ "epoch": 0.48,
819
+ "learning_rate": 0.00044770831922815634,
820
+ "loss": 0.5854,
821
+ "step": 134
822
+ },
823
+ {
824
+ "epoch": 0.48,
825
+ "learning_rate": 0.00044681315055827256,
826
+ "loss": 0.587,
827
+ "step": 135
828
+ },
829
+ {
830
+ "epoch": 0.48,
831
+ "learning_rate": 0.00044591129575403764,
832
+ "loss": 0.5902,
833
+ "step": 136
834
+ },
835
+ {
836
+ "epoch": 0.49,
837
+ "learning_rate": 0.0004450027854532539,
838
+ "loss": 0.5616,
839
+ "step": 137
840
+ },
841
+ {
842
+ "epoch": 0.49,
843
+ "learning_rate": 0.0004440876505198241,
844
+ "loss": 0.52,
845
+ "step": 138
846
+ },
847
+ {
848
+ "epoch": 0.5,
849
+ "learning_rate": 0.0004431659220427028,
850
+ "loss": 0.6061,
851
+ "step": 139
852
+ },
853
+ {
854
+ "epoch": 0.5,
855
+ "learning_rate": 0.00044223763133484053,
856
+ "loss": 0.6221,
857
+ "step": 140
858
+ },
859
+ {
860
+ "epoch": 0.5,
861
+ "eval_loss": 0.63558429479599,
862
+ "eval_runtime": 198.9919,
863
+ "eval_samples_per_second": 2.799,
864
+ "eval_steps_per_second": 0.352,
865
+ "step": 140
866
+ },
867
+ {
868
+ "epoch": 0.5,
869
+ "learning_rate": 0.00044130280993211977,
870
+ "loss": 0.5824,
871
+ "step": 141
872
+ },
873
+ {
874
+ "epoch": 0.51,
875
+ "learning_rate": 0.0004403614895922836,
876
+ "loss": 0.5593,
877
+ "step": 142
878
+ },
879
+ {
880
+ "epoch": 0.51,
881
+ "learning_rate": 0.0004394137022938572,
882
+ "loss": 0.5498,
883
+ "step": 143
884
+ },
885
+ {
886
+ "epoch": 0.51,
887
+ "learning_rate": 0.000438459480235061,
888
+ "loss": 0.4511,
889
+ "step": 144
890
+ },
891
+ {
892
+ "epoch": 0.52,
893
+ "learning_rate": 0.00043749885583271706,
894
+ "loss": 0.6089,
895
+ "step": 145
896
+ },
897
+ {
898
+ "epoch": 0.52,
899
+ "learning_rate": 0.0004365318617211479,
900
+ "loss": 0.5361,
901
+ "step": 146
902
+ },
903
+ {
904
+ "epoch": 0.52,
905
+ "learning_rate": 0.0004355585307510675,
906
+ "loss": 0.5839,
907
+ "step": 147
908
+ },
909
+ {
910
+ "epoch": 0.53,
911
+ "learning_rate": 0.0004345788959884658,
912
+ "loss": 0.6201,
913
+ "step": 148
914
+ },
915
+ {
916
+ "epoch": 0.53,
917
+ "learning_rate": 0.0004335929907134849,
918
+ "loss": 0.5846,
919
+ "step": 149
920
+ },
921
+ {
922
+ "epoch": 0.53,
923
+ "learning_rate": 0.0004326008484192889,
924
+ "loss": 0.6182,
925
+ "step": 150
926
+ },
927
+ {
928
+ "epoch": 0.54,
929
+ "learning_rate": 0.0004316025028109257,
930
+ "loss": 0.5627,
931
+ "step": 151
932
+ },
933
+ {
934
+ "epoch": 0.54,
935
+ "learning_rate": 0.00043059798780418227,
936
+ "loss": 0.5682,
937
+ "step": 152
938
+ },
939
+ {
940
+ "epoch": 0.55,
941
+ "learning_rate": 0.0004295873375244319,
942
+ "loss": 0.553,
943
+ "step": 153
944
+ },
945
+ {
946
+ "epoch": 0.55,
947
+ "learning_rate": 0.00042857058630547593,
948
+ "loss": 0.5855,
949
+ "step": 154
950
+ },
951
+ {
952
+ "epoch": 0.55,
953
+ "learning_rate": 0.0004275477686883763,
954
+ "loss": 0.5767,
955
+ "step": 155
956
+ },
957
+ {
958
+ "epoch": 0.56,
959
+ "learning_rate": 0.00042651891942028277,
960
+ "loss": 0.6073,
961
+ "step": 156
962
+ },
963
+ {
964
+ "epoch": 0.56,
965
+ "learning_rate": 0.0004254840734532521,
966
+ "loss": 0.6588,
967
+ "step": 157
968
+ },
969
+ {
970
+ "epoch": 0.56,
971
+ "learning_rate": 0.0004244432659430611,
972
+ "loss": 0.6238,
973
+ "step": 158
974
+ },
975
+ {
976
+ "epoch": 0.57,
977
+ "learning_rate": 0.000423396532248012,
978
+ "loss": 0.5849,
979
+ "step": 159
980
+ },
981
+ {
982
+ "epoch": 0.57,
983
+ "learning_rate": 0.00042234390792773104,
984
+ "loss": 0.5523,
985
+ "step": 160
986
+ },
987
+ {
988
+ "epoch": 0.57,
989
+ "learning_rate": 0.00042128542874196107,
990
+ "loss": 0.6036,
991
+ "step": 161
992
+ },
993
+ {
994
+ "epoch": 0.58,
995
+ "learning_rate": 0.0004202211306493462,
996
+ "loss": 0.5092,
997
+ "step": 162
998
+ },
999
+ {
1000
+ "epoch": 0.58,
1001
+ "learning_rate": 0.00041915104980621036,
1002
+ "loss": 0.5824,
1003
+ "step": 163
1004
+ },
1005
+ {
1006
+ "epoch": 0.58,
1007
+ "learning_rate": 0.0004180752225653292,
1008
+ "loss": 0.5954,
1009
+ "step": 164
1010
+ },
1011
+ {
1012
+ "epoch": 0.59,
1013
+ "learning_rate": 0.00041699368547469474,
1014
+ "loss": 0.6017,
1015
+ "step": 165
1016
+ },
1017
+ {
1018
+ "epoch": 0.59,
1019
+ "learning_rate": 0.000415906475276274,
1020
+ "loss": 0.6067,
1021
+ "step": 166
1022
+ },
1023
+ {
1024
+ "epoch": 0.6,
1025
+ "learning_rate": 0.00041481362890476094,
1026
+ "loss": 0.5795,
1027
+ "step": 167
1028
+ },
1029
+ {
1030
+ "epoch": 0.6,
1031
+ "learning_rate": 0.0004137151834863213,
1032
+ "loss": 0.5781,
1033
+ "step": 168
1034
+ },
1035
+ {
1036
+ "epoch": 0.6,
1037
+ "learning_rate": 0.0004126111763373316,
1038
+ "loss": 0.4852,
1039
+ "step": 169
1040
+ },
1041
+ {
1042
+ "epoch": 0.61,
1043
+ "learning_rate": 0.0004115016449631116,
1044
+ "loss": 0.5648,
1045
+ "step": 170
1046
+ },
1047
+ {
1048
+ "epoch": 0.61,
1049
+ "learning_rate": 0.00041038662705664977,
1050
+ "loss": 0.5295,
1051
+ "step": 171
1052
+ },
1053
+ {
1054
+ "epoch": 0.61,
1055
+ "learning_rate": 0.00040926616049732326,
1056
+ "loss": 0.5873,
1057
+ "step": 172
1058
+ },
1059
+ {
1060
+ "epoch": 0.62,
1061
+ "learning_rate": 0.00040814028334961046,
1062
+ "loss": 0.5378,
1063
+ "step": 173
1064
+ },
1065
+ {
1066
+ "epoch": 0.62,
1067
+ "learning_rate": 0.00040700903386179846,
1068
+ "loss": 0.5169,
1069
+ "step": 174
1070
+ },
1071
+ {
1072
+ "epoch": 0.62,
1073
+ "learning_rate": 0.0004058724504646834,
1074
+ "loss": 0.6132,
1075
+ "step": 175
1076
+ },
1077
+ {
1078
+ "epoch": 0.63,
1079
+ "learning_rate": 0.0004047305717702648,
1080
+ "loss": 0.552,
1081
+ "step": 176
1082
+ },
1083
+ {
1084
+ "epoch": 0.63,
1085
+ "learning_rate": 0.00040358343657043426,
1086
+ "loss": 0.603,
1087
+ "step": 177
1088
+ },
1089
+ {
1090
+ "epoch": 0.63,
1091
+ "learning_rate": 0.000402431083835657,
1092
+ "loss": 0.6098,
1093
+ "step": 178
1094
+ },
1095
+ {
1096
+ "epoch": 0.64,
1097
+ "learning_rate": 0.0004012735527136484,
1098
+ "loss": 0.5621,
1099
+ "step": 179
1100
+ },
1101
+ {
1102
+ "epoch": 0.64,
1103
+ "learning_rate": 0.000400110882528044,
1104
+ "loss": 0.6059,
1105
+ "step": 180
1106
+ },
1107
+ {
1108
+ "epoch": 0.65,
1109
+ "learning_rate": 0.00039894311277706353,
1110
+ "loss": 0.4741,
1111
+ "step": 181
1112
+ },
1113
+ {
1114
+ "epoch": 0.65,
1115
+ "learning_rate": 0.00039777028313216917,
1116
+ "loss": 0.5297,
1117
+ "step": 182
1118
+ },
1119
+ {
1120
+ "epoch": 0.65,
1121
+ "learning_rate": 0.0003965924334367176,
1122
+ "loss": 0.6088,
1123
+ "step": 183
1124
+ },
1125
+ {
1126
+ "epoch": 0.66,
1127
+ "learning_rate": 0.00039540960370460675,
1128
+ "loss": 0.5557,
1129
+ "step": 184
1130
+ },
1131
+ {
1132
+ "epoch": 0.66,
1133
+ "learning_rate": 0.0003942218341189163,
1134
+ "loss": 0.5715,
1135
+ "step": 185
1136
+ },
1137
+ {
1138
+ "epoch": 0.66,
1139
+ "learning_rate": 0.00039302916503054243,
1140
+ "loss": 0.5159,
1141
+ "step": 186
1142
+ },
1143
+ {
1144
+ "epoch": 0.67,
1145
+ "learning_rate": 0.00039183163695682743,
1146
+ "loss": 0.5934,
1147
+ "step": 187
1148
+ },
1149
+ {
1150
+ "epoch": 0.67,
1151
+ "learning_rate": 0.0003906292905801828,
1152
+ "loss": 0.5653,
1153
+ "step": 188
1154
+ },
1155
+ {
1156
+ "epoch": 0.67,
1157
+ "learning_rate": 0.00038942216674670737,
1158
+ "loss": 0.5228,
1159
+ "step": 189
1160
+ },
1161
+ {
1162
+ "epoch": 0.68,
1163
+ "learning_rate": 0.0003882103064647998,
1164
+ "loss": 0.5935,
1165
+ "step": 190
1166
+ },
1167
+ {
1168
+ "epoch": 0.68,
1169
+ "learning_rate": 0.0003869937509037653,
1170
+ "loss": 0.6082,
1171
+ "step": 191
1172
+ },
1173
+ {
1174
+ "epoch": 0.68,
1175
+ "learning_rate": 0.00038577254139241705,
1176
+ "loss": 0.5425,
1177
+ "step": 192
1178
+ },
1179
+ {
1180
+ "epoch": 0.69,
1181
+ "learning_rate": 0.00038454671941767207,
1182
+ "loss": 0.5189,
1183
+ "step": 193
1184
+ },
1185
+ {
1186
+ "epoch": 0.69,
1187
+ "learning_rate": 0.0003833163266231421,
1188
+ "loss": 0.5987,
1189
+ "step": 194
1190
+ },
1191
+ {
1192
+ "epoch": 0.7,
1193
+ "learning_rate": 0.0003820814048077186,
1194
+ "loss": 0.627,
1195
+ "step": 195
1196
+ },
1197
+ {
1198
+ "epoch": 0.7,
1199
+ "learning_rate": 0.000380841995924153,
1200
+ "loss": 0.5571,
1201
+ "step": 196
1202
+ },
1203
+ {
1204
+ "epoch": 0.7,
1205
+ "learning_rate": 0.0003795981420776313,
1206
+ "loss": 0.6027,
1207
+ "step": 197
1208
+ },
1209
+ {
1210
+ "epoch": 0.71,
1211
+ "learning_rate": 0.0003783498855243436,
1212
+ "loss": 0.5935,
1213
+ "step": 198
1214
+ },
1215
+ {
1216
+ "epoch": 0.71,
1217
+ "learning_rate": 0.000377097268670049,
1218
+ "loss": 0.5434,
1219
+ "step": 199
1220
+ },
1221
+ {
1222
+ "epoch": 0.71,
1223
+ "learning_rate": 0.00037584033406863447,
1224
+ "loss": 0.5526,
1225
+ "step": 200
1226
+ },
1227
+ {
1228
+ "epoch": 0.72,
1229
+ "learning_rate": 0.00037457912442066967,
1230
+ "loss": 0.5365,
1231
+ "step": 201
1232
+ },
1233
+ {
1234
+ "epoch": 0.72,
1235
+ "learning_rate": 0.00037331368257195567,
1236
+ "loss": 0.5107,
1237
+ "step": 202
1238
+ },
1239
+ {
1240
+ "epoch": 0.72,
1241
+ "learning_rate": 0.0003720440515120703,
1242
+ "loss": 0.5263,
1243
+ "step": 203
1244
+ },
1245
+ {
1246
+ "epoch": 0.73,
1247
+ "learning_rate": 0.000370770274372907,
1248
+ "loss": 0.5953,
1249
+ "step": 204
1250
+ },
1251
+ {
1252
+ "epoch": 0.73,
1253
+ "learning_rate": 0.00036949239442720977,
1254
+ "loss": 0.6457,
1255
+ "step": 205
1256
+ },
1257
+ {
1258
+ "epoch": 0.73,
1259
+ "learning_rate": 0.0003682104550871031,
1260
+ "loss": 0.624,
1261
+ "step": 206
1262
+ },
1263
+ {
1264
+ "epoch": 0.74,
1265
+ "learning_rate": 0.0003669244999026173,
1266
+ "loss": 0.5689,
1267
+ "step": 207
1268
+ },
1269
+ {
1270
+ "epoch": 0.74,
1271
+ "learning_rate": 0.00036563457256020887,
1272
+ "loss": 0.5494,
1273
+ "step": 208
1274
+ },
1275
+ {
1276
+ "epoch": 0.75,
1277
+ "learning_rate": 0.00036434071688127624,
1278
+ "loss": 0.5659,
1279
+ "step": 209
1280
+ },
1281
+ {
1282
+ "epoch": 0.75,
1283
+ "learning_rate": 0.00036304297682067144,
1284
+ "loss": 0.5498,
1285
+ "step": 210
1286
+ },
1287
+ {
1288
+ "epoch": 0.75,
1289
+ "learning_rate": 0.00036174139646520664,
1290
+ "loss": 0.5938,
1291
+ "step": 211
1292
+ },
1293
+ {
1294
+ "epoch": 0.76,
1295
+ "learning_rate": 0.00036043602003215655,
1296
+ "loss": 0.4765,
1297
+ "step": 212
1298
+ },
1299
+ {
1300
+ "epoch": 0.76,
1301
+ "learning_rate": 0.00035912689186775595,
1302
+ "loss": 0.5613,
1303
+ "step": 213
1304
+ },
1305
+ {
1306
+ "epoch": 0.76,
1307
+ "learning_rate": 0.0003578140564456935,
1308
+ "loss": 0.5598,
1309
+ "step": 214
1310
+ },
1311
+ {
1312
+ "epoch": 0.77,
1313
+ "learning_rate": 0.00035649755836560104,
1314
+ "loss": 0.5731,
1315
+ "step": 215
1316
+ },
1317
+ {
1318
+ "epoch": 0.77,
1319
+ "learning_rate": 0.0003551774423515378,
1320
+ "loss": 0.5232,
1321
+ "step": 216
1322
+ },
1323
+ {
1324
+ "epoch": 0.77,
1325
+ "learning_rate": 0.00035385375325047166,
1326
+ "loss": 0.5798,
1327
+ "step": 217
1328
+ },
1329
+ {
1330
+ "epoch": 0.78,
1331
+ "learning_rate": 0.0003525265360307552,
1332
+ "loss": 0.588,
1333
+ "step": 218
1334
+ },
1335
+ {
1336
+ "epoch": 0.78,
1337
+ "learning_rate": 0.00035119583578059843,
1338
+ "loss": 0.5125,
1339
+ "step": 219
1340
+ },
1341
+ {
1342
+ "epoch": 0.78,
1343
+ "learning_rate": 0.0003498616977065368,
1344
+ "loss": 0.5019,
1345
+ "step": 220
1346
+ },
1347
+ {
1348
+ "epoch": 0.79,
1349
+ "learning_rate": 0.00034852416713189525,
1350
+ "loss": 0.5665,
1351
+ "step": 221
1352
+ },
1353
+ {
1354
+ "epoch": 0.79,
1355
+ "learning_rate": 0.0003471832894952489,
1356
+ "loss": 0.5772,
1357
+ "step": 222
1358
+ },
1359
+ {
1360
+ "epoch": 0.8,
1361
+ "learning_rate": 0.00034583911034887925,
1362
+ "loss": 0.5062,
1363
+ "step": 223
1364
+ },
1365
+ {
1366
+ "epoch": 0.8,
1367
+ "learning_rate": 0.0003444916753572266,
1368
+ "loss": 0.5611,
1369
+ "step": 224
1370
+ },
1371
+ {
1372
+ "epoch": 0.8,
1373
+ "learning_rate": 0.00034314103029533887,
1374
+ "loss": 0.5059,
1375
+ "step": 225
1376
+ },
1377
+ {
1378
+ "epoch": 0.81,
1379
+ "learning_rate": 0.00034178722104731617,
1380
+ "loss": 0.5506,
1381
+ "step": 226
1382
+ },
1383
+ {
1384
+ "epoch": 0.81,
1385
+ "learning_rate": 0.0003404302936047527,
1386
+ "loss": 0.6399,
1387
+ "step": 227
1388
+ },
1389
+ {
1390
+ "epoch": 0.81,
1391
+ "learning_rate": 0.0003390702940651737,
1392
+ "loss": 0.5479,
1393
+ "step": 228
1394
+ },
1395
+ {
1396
+ "epoch": 0.82,
1397
+ "learning_rate": 0.00033770726863046967,
1398
+ "loss": 0.571,
1399
+ "step": 229
1400
+ },
1401
+ {
1402
+ "epoch": 0.82,
1403
+ "learning_rate": 0.0003363412636053269,
1404
+ "loss": 0.5847,
1405
+ "step": 230
1406
+ },
1407
+ {
1408
+ "epoch": 0.82,
1409
+ "learning_rate": 0.00033497232539565416,
1410
+ "loss": 0.5788,
1411
+ "step": 231
1412
+ },
1413
+ {
1414
+ "epoch": 0.83,
1415
+ "learning_rate": 0.00033360050050700653,
1416
+ "loss": 0.5877,
1417
+ "step": 232
1418
+ },
1419
+ {
1420
+ "epoch": 0.83,
1421
+ "learning_rate": 0.00033222583554300497,
1422
+ "loss": 0.6003,
1423
+ "step": 233
1424
+ },
1425
+ {
1426
+ "epoch": 0.83,
1427
+ "learning_rate": 0.0003308483772037538,
1428
+ "loss": 0.635,
1429
+ "step": 234
1430
+ },
1431
+ {
1432
+ "epoch": 0.84,
1433
+ "learning_rate": 0.00032946817228425373,
1434
+ "loss": 0.4722,
1435
+ "step": 235
1436
+ },
1437
+ {
1438
+ "epoch": 0.84,
1439
+ "learning_rate": 0.00032808526767281223,
1440
+ "loss": 0.5363,
1441
+ "step": 236
1442
+ },
1443
+ {
1444
+ "epoch": 0.84,
1445
+ "learning_rate": 0.00032669971034945077,
1446
+ "loss": 0.5213,
1447
+ "step": 237
1448
+ },
1449
+ {
1450
+ "epoch": 0.85,
1451
+ "learning_rate": 0.00032531154738430856,
1452
+ "loss": 0.6031,
1453
+ "step": 238
1454
+ },
1455
+ {
1456
+ "epoch": 0.85,
1457
+ "learning_rate": 0.0003239208259360439,
1458
+ "loss": 0.5493,
1459
+ "step": 239
1460
+ },
1461
+ {
1462
+ "epoch": 0.86,
1463
+ "learning_rate": 0.0003225275932502315,
1464
+ "loss": 0.4935,
1465
+ "step": 240
1466
+ },
1467
+ {
1468
+ "epoch": 0.86,
1469
+ "learning_rate": 0.0003211318966577581,
1470
+ "loss": 0.5087,
1471
+ "step": 241
1472
+ },
1473
+ {
1474
+ "epoch": 0.86,
1475
+ "learning_rate": 0.00031973378357321423,
1476
+ "loss": 0.6433,
1477
+ "step": 242
1478
+ },
1479
+ {
1480
+ "epoch": 0.87,
1481
+ "learning_rate": 0.0003183333014932833,
1482
+ "loss": 0.6,
1483
+ "step": 243
1484
+ },
1485
+ {
1486
+ "epoch": 0.87,
1487
+ "learning_rate": 0.0003169304979951284,
1488
+ "loss": 0.5165,
1489
+ "step": 244
1490
+ },
1491
+ {
1492
+ "epoch": 0.87,
1493
+ "learning_rate": 0.0003155254207347755,
1494
+ "loss": 0.5166,
1495
+ "step": 245
1496
+ },
1497
+ {
1498
+ "epoch": 0.88,
1499
+ "learning_rate": 0.00031411811744549534,
1500
+ "loss": 0.613,
1501
+ "step": 246
1502
+ },
1503
+ {
1504
+ "epoch": 0.88,
1505
+ "learning_rate": 0.00031270863593618064,
1506
+ "loss": 0.519,
1507
+ "step": 247
1508
+ },
1509
+ {
1510
+ "epoch": 0.88,
1511
+ "learning_rate": 0.00031129702408972315,
1512
+ "loss": 0.557,
1513
+ "step": 248
1514
+ },
1515
+ {
1516
+ "epoch": 0.89,
1517
+ "learning_rate": 0.0003098833298613861,
1518
+ "loss": 0.523,
1519
+ "step": 249
1520
+ },
1521
+ {
1522
+ "epoch": 0.89,
1523
+ "learning_rate": 0.00030846760127717533,
1524
+ "loss": 0.5623,
1525
+ "step": 250
1526
+ },
1527
+ {
1528
+ "epoch": 0.89,
1529
+ "learning_rate": 0.0003070498864322081,
1530
+ "loss": 0.4991,
1531
+ "step": 251
1532
+ },
1533
+ {
1534
+ "epoch": 0.9,
1535
+ "learning_rate": 0.0003056302334890786,
1536
+ "loss": 0.5366,
1537
+ "step": 252
1538
+ },
1539
+ {
1540
+ "epoch": 0.9,
1541
+ "learning_rate": 0.00030420869067622225,
1542
+ "loss": 0.5112,
1543
+ "step": 253
1544
+ },
1545
+ {
1546
+ "epoch": 0.91,
1547
+ "learning_rate": 0.00030278530628627707,
1548
+ "loss": 0.5889,
1549
+ "step": 254
1550
+ },
1551
+ {
1552
+ "epoch": 0.91,
1553
+ "learning_rate": 0.000301360128674443,
1554
+ "loss": 0.5482,
1555
+ "step": 255
1556
+ },
1557
+ {
1558
+ "epoch": 0.91,
1559
+ "learning_rate": 0.0002999332062568395,
1560
+ "loss": 0.4544,
1561
+ "step": 256
1562
+ },
1563
+ {
1564
+ "epoch": 0.92,
1565
+ "learning_rate": 0.00029850458750886025,
1566
+ "loss": 0.6034,
1567
+ "step": 257
1568
+ },
1569
+ {
1570
+ "epoch": 0.92,
1571
+ "learning_rate": 0.0002970743209635271,
1572
+ "loss": 0.5452,
1573
+ "step": 258
1574
+ },
1575
+ {
1576
+ "epoch": 0.92,
1577
+ "learning_rate": 0.00029564245520984046,
1578
+ "loss": 0.5371,
1579
+ "step": 259
1580
+ },
1581
+ {
1582
+ "epoch": 0.93,
1583
+ "learning_rate": 0.0002942090388911291,
1584
+ "loss": 0.547,
1585
+ "step": 260
1586
+ },
1587
+ {
1588
+ "epoch": 0.93,
1589
+ "learning_rate": 0.00029277412070339784,
1590
+ "loss": 0.5784,
1591
+ "step": 261
1592
+ },
1593
+ {
1594
+ "epoch": 0.93,
1595
+ "learning_rate": 0.00029133774939367246,
1596
+ "loss": 0.65,
1597
+ "step": 262
1598
+ },
1599
+ {
1600
+ "epoch": 0.94,
1601
+ "learning_rate": 0.00028989997375834483,
1602
+ "loss": 0.5748,
1603
+ "step": 263
1604
+ },
1605
+ {
1606
+ "epoch": 0.94,
1607
+ "learning_rate": 0.000288460842641514,
1608
+ "loss": 0.6431,
1609
+ "step": 264
1610
+ },
1611
+ {
1612
+ "epoch": 0.94,
1613
+ "learning_rate": 0.0002870204049333278,
1614
+ "loss": 0.6197,
1615
+ "step": 265
1616
+ },
1617
+ {
1618
+ "epoch": 0.95,
1619
+ "learning_rate": 0.00028557870956832135,
1620
+ "loss": 0.5406,
1621
+ "step": 266
1622
+ },
1623
+ {
1624
+ "epoch": 0.95,
1625
+ "learning_rate": 0.0002841358055237548,
1626
+ "loss": 0.5561,
1627
+ "step": 267
1628
+ },
1629
+ {
1630
+ "epoch": 0.96,
1631
+ "learning_rate": 0.00028269174181795,
1632
+ "loss": 0.5431,
1633
+ "step": 268
1634
+ },
1635
+ {
1636
+ "epoch": 0.96,
1637
+ "learning_rate": 0.0002812465675086242,
1638
+ "loss": 0.4532,
1639
+ "step": 269
1640
+ },
1641
+ {
1642
+ "epoch": 0.96,
1643
+ "learning_rate": 0.00027980033169122453,
1644
+ "loss": 0.5608,
1645
+ "step": 270
1646
+ },
1647
+ {
1648
+ "epoch": 0.97,
1649
+ "learning_rate": 0.0002783530834972594,
1650
+ "loss": 0.5714,
1651
+ "step": 271
1652
+ },
1653
+ {
1654
+ "epoch": 0.97,
1655
+ "learning_rate": 0.00027690487209262985,
1656
+ "loss": 0.5358,
1657
+ "step": 272
1658
+ },
1659
+ {
1660
+ "epoch": 0.97,
1661
+ "learning_rate": 0.0002754557466759589,
1662
+ "loss": 0.5983,
1663
+ "step": 273
1664
+ },
1665
+ {
1666
+ "epoch": 0.98,
1667
+ "learning_rate": 0.00027400575647692046,
1668
+ "loss": 0.554,
1669
+ "step": 274
1670
+ },
1671
+ {
1672
+ "epoch": 0.98,
1673
+ "learning_rate": 0.0002725549507545669,
1674
+ "loss": 0.5627,
1675
+ "step": 275
1676
+ },
1677
+ {
1678
+ "epoch": 0.98,
1679
+ "learning_rate": 0.0002711033787956555,
1680
+ "loss": 0.5589,
1681
+ "step": 276
1682
+ },
1683
+ {
1684
+ "epoch": 0.99,
1685
+ "learning_rate": 0.0002696510899129741,
1686
+ "loss": 0.5278,
1687
+ "step": 277
1688
+ },
1689
+ {
1690
+ "epoch": 0.99,
1691
+ "learning_rate": 0.0002681981334436658,
1692
+ "loss": 0.5899,
1693
+ "step": 278
1694
+ },
1695
+ {
1696
+ "epoch": 0.99,
1697
+ "learning_rate": 0.000266744558747553,
1698
+ "loss": 0.5495,
1699
+ "step": 279
1700
+ },
1701
+ {
1702
+ "epoch": 1.0,
1703
+ "learning_rate": 0.00026529041520546073,
1704
+ "loss": 0.623,
1705
+ "step": 280
1706
+ },
1707
+ {
1708
+ "epoch": 1.0,
1709
+ "eval_loss": 0.6136069893836975,
1710
+ "eval_runtime": 198.4894,
1711
+ "eval_samples_per_second": 2.806,
1712
+ "eval_steps_per_second": 0.353,
1713
+ "step": 280
1714
+ },
1715
+ {
1716
+ "epoch": 1.0,
1717
+ "learning_rate": 0.0002638357522175383,
1718
+ "loss": 0.6154,
1719
+ "step": 281
1720
+ },
1721
+ {
1722
+ "epoch": 1.01,
1723
+ "learning_rate": 0.0002623806192015822,
1724
+ "loss": 0.5743,
1725
+ "step": 282
1726
+ },
1727
+ {
1728
+ "epoch": 1.01,
1729
+ "learning_rate": 0.00026092506559135636,
1730
+ "loss": 0.6908,
1731
+ "step": 283
1732
+ },
1733
+ {
1734
+ "epoch": 1.01,
1735
+ "learning_rate": 0.00025946914083491314,
1736
+ "loss": 0.5411,
1737
+ "step": 284
1738
+ },
1739
+ {
1740
+ "epoch": 1.02,
1741
+ "learning_rate": 0.00025801289439291385,
1742
+ "loss": 0.4812,
1743
+ "step": 285
1744
+ },
1745
+ {
1746
+ "epoch": 1.0,
1747
+ "learning_rate": 0.00025655637573694754,
1748
+ "loss": 0.496,
1749
+ "step": 286
1750
+ },
1751
+ {
1752
+ "epoch": 1.01,
1753
+ "learning_rate": 0.0002550996343478514,
1754
+ "loss": 0.5207,
1755
+ "step": 287
1756
+ },
1757
+ {
1758
+ "epoch": 1.01,
1759
+ "learning_rate": 0.00025364271971402893,
1760
+ "loss": 0.5031,
1761
+ "step": 288
1762
+ },
1763
+ {
1764
+ "epoch": 1.01,
1765
+ "learning_rate": 0.0002521856813297694,
1766
+ "loss": 0.5271,
1767
+ "step": 289
1768
+ },
1769
+ {
1770
+ "epoch": 1.02,
1771
+ "learning_rate": 0.0002507285686935659,
1772
+ "loss": 0.518,
1773
+ "step": 290
1774
+ },
1775
+ {
1776
+ "epoch": 1.02,
1777
+ "learning_rate": 0.00024927143130643416,
1778
+ "loss": 0.5057,
1779
+ "step": 291
1780
+ },
1781
+ {
1782
+ "epoch": 1.02,
1783
+ "learning_rate": 0.0002478143186702307,
1784
+ "loss": 0.5351,
1785
+ "step": 292
1786
+ },
1787
+ {
1788
+ "epoch": 1.03,
1789
+ "learning_rate": 0.00024635728028597114,
1790
+ "loss": 0.4433,
1791
+ "step": 293
1792
+ },
1793
+ {
1794
+ "epoch": 1.03,
1795
+ "learning_rate": 0.00024490036565214874,
1796
+ "loss": 0.5077,
1797
+ "step": 294
1798
+ },
1799
+ {
1800
+ "epoch": 1.04,
1801
+ "learning_rate": 0.00024344362426305253,
1802
+ "loss": 0.5399,
1803
+ "step": 295
1804
+ },
1805
+ {
1806
+ "epoch": 1.04,
1807
+ "learning_rate": 0.0002419871056070862,
1808
+ "loss": 0.4793,
1809
+ "step": 296
1810
+ },
1811
+ {
1812
+ "epoch": 1.04,
1813
+ "learning_rate": 0.00024053085916508682,
1814
+ "loss": 0.4622,
1815
+ "step": 297
1816
+ },
1817
+ {
1818
+ "epoch": 1.05,
1819
+ "learning_rate": 0.00023907493440864376,
1820
+ "loss": 0.4974,
1821
+ "step": 298
1822
+ },
1823
+ {
1824
+ "epoch": 1.05,
1825
+ "learning_rate": 0.0002376193807984179,
1826
+ "loss": 0.5253,
1827
+ "step": 299
1828
+ },
1829
+ {
1830
+ "epoch": 1.05,
1831
+ "learning_rate": 0.00023616424778246173,
1832
+ "loss": 0.4982,
1833
+ "step": 300
1834
+ },
1835
+ {
1836
+ "epoch": 1.06,
1837
+ "learning_rate": 0.0002347095847945394,
1838
+ "loss": 0.5616,
1839
+ "step": 301
1840
+ },
1841
+ {
1842
+ "epoch": 1.06,
1843
+ "learning_rate": 0.000233255441252447,
1844
+ "loss": 0.4371,
1845
+ "step": 302
1846
+ },
1847
+ {
1848
+ "epoch": 1.06,
1849
+ "learning_rate": 0.0002318018665563342,
1850
+ "loss": 0.4778,
1851
+ "step": 303
1852
+ },
1853
+ {
1854
+ "epoch": 1.07,
1855
+ "learning_rate": 0.0002303489100870259,
1856
+ "loss": 0.4945,
1857
+ "step": 304
1858
+ },
1859
+ {
1860
+ "epoch": 1.07,
1861
+ "learning_rate": 0.0002288966212043445,
1862
+ "loss": 0.5463,
1863
+ "step": 305
1864
+ },
1865
+ {
1866
+ "epoch": 1.07,
1867
+ "learning_rate": 0.00022744504924543312,
1868
+ "loss": 0.5336,
1869
+ "step": 306
1870
+ },
1871
+ {
1872
+ "epoch": 1.08,
1873
+ "learning_rate": 0.00022599424352307955,
1874
+ "loss": 0.4718,
1875
+ "step": 307
1876
+ },
1877
+ {
1878
+ "epoch": 1.08,
1879
+ "learning_rate": 0.0002245442533240412,
1880
+ "loss": 0.5304,
1881
+ "step": 308
1882
+ },
1883
+ {
1884
+ "epoch": 1.09,
1885
+ "learning_rate": 0.00022309512790737022,
1886
+ "loss": 0.542,
1887
+ "step": 309
1888
+ },
1889
+ {
1890
+ "epoch": 1.09,
1891
+ "learning_rate": 0.0002216469165027406,
1892
+ "loss": 0.4194,
1893
+ "step": 310
1894
+ },
1895
+ {
1896
+ "epoch": 1.09,
1897
+ "learning_rate": 0.00022019966830877545,
1898
+ "loss": 0.4644,
1899
+ "step": 311
1900
+ },
1901
+ {
1902
+ "epoch": 1.1,
1903
+ "learning_rate": 0.00021875343249137585,
1904
+ "loss": 0.5484,
1905
+ "step": 312
1906
+ },
1907
+ {
1908
+ "epoch": 1.1,
1909
+ "learning_rate": 0.00021730825818205005,
1910
+ "loss": 0.5093,
1911
+ "step": 313
1912
+ },
1913
+ {
1914
+ "epoch": 1.1,
1915
+ "learning_rate": 0.00021586419447624516,
1916
+ "loss": 0.509,
1917
+ "step": 314
1918
+ },
1919
+ {
1920
+ "epoch": 1.11,
1921
+ "learning_rate": 0.00021442129043167875,
1922
+ "loss": 0.5271,
1923
+ "step": 315
1924
+ },
1925
+ {
1926
+ "epoch": 1.11,
1927
+ "learning_rate": 0.00021297959506667226,
1928
+ "loss": 0.4942,
1929
+ "step": 316
1930
+ },
1931
+ {
1932
+ "epoch": 1.11,
1933
+ "learning_rate": 0.000211539157358486,
1934
+ "loss": 0.4353,
1935
+ "step": 317
1936
+ },
1937
+ {
1938
+ "epoch": 1.12,
1939
+ "learning_rate": 0.00021010002624165526,
1940
+ "loss": 0.4904,
1941
+ "step": 318
1942
+ },
1943
+ {
1944
+ "epoch": 1.12,
1945
+ "learning_rate": 0.00020866225060632758,
1946
+ "loss": 0.5331,
1947
+ "step": 319
1948
+ },
1949
+ {
1950
+ "epoch": 1.12,
1951
+ "learning_rate": 0.00020722587929660225,
1952
+ "loss": 0.4968,
1953
+ "step": 320
1954
+ },
1955
+ {
1956
+ "epoch": 1.13,
1957
+ "learning_rate": 0.0002057909611088709,
1958
+ "loss": 0.466,
1959
+ "step": 321
1960
+ },
1961
+ {
1962
+ "epoch": 1.13,
1963
+ "learning_rate": 0.0002043575447901596,
1964
+ "loss": 0.5048,
1965
+ "step": 322
1966
+ },
1967
+ {
1968
+ "epoch": 1.14,
1969
+ "learning_rate": 0.00020292567903647295,
1970
+ "loss": 0.4814,
1971
+ "step": 323
1972
+ },
1973
+ {
1974
+ "epoch": 1.14,
1975
+ "learning_rate": 0.00020149541249113974,
1976
+ "loss": 0.4597,
1977
+ "step": 324
1978
+ },
1979
+ {
1980
+ "epoch": 1.14,
1981
+ "learning_rate": 0.0002000667937431606,
1982
+ "loss": 0.4713,
1983
+ "step": 325
1984
+ },
1985
+ {
1986
+ "epoch": 1.15,
1987
+ "learning_rate": 0.00019863987132555706,
1988
+ "loss": 0.4872,
1989
+ "step": 326
1990
+ },
1991
+ {
1992
+ "epoch": 1.15,
1993
+ "learning_rate": 0.00019721469371372294,
1994
+ "loss": 0.5875,
1995
+ "step": 327
1996
+ },
1997
+ {
1998
+ "epoch": 1.15,
1999
+ "learning_rate": 0.00019579130932377773,
2000
+ "loss": 0.5324,
2001
+ "step": 328
2002
+ },
2003
+ {
2004
+ "epoch": 1.16,
2005
+ "learning_rate": 0.00019436976651092142,
2006
+ "loss": 0.5202,
2007
+ "step": 329
2008
+ },
2009
+ {
2010
+ "epoch": 1.16,
2011
+ "learning_rate": 0.00019295011356779194,
2012
+ "loss": 0.5041,
2013
+ "step": 330
2014
+ },
2015
+ {
2016
+ "epoch": 1.16,
2017
+ "learning_rate": 0.00019153239872282468,
2018
+ "loss": 0.5868,
2019
+ "step": 331
2020
+ },
2021
+ {
2022
+ "epoch": 1.17,
2023
+ "learning_rate": 0.000190116670138614,
2024
+ "loss": 0.5245,
2025
+ "step": 332
2026
+ },
2027
+ {
2028
+ "epoch": 1.17,
2029
+ "learning_rate": 0.00018870297591027692,
2030
+ "loss": 0.5102,
2031
+ "step": 333
2032
+ },
2033
+ {
2034
+ "epoch": 1.17,
2035
+ "learning_rate": 0.00018729136406381937,
2036
+ "loss": 0.5316,
2037
+ "step": 334
2038
+ },
2039
+ {
2040
+ "epoch": 1.18,
2041
+ "learning_rate": 0.00018588188255450467,
2042
+ "loss": 0.5335,
2043
+ "step": 335
2044
+ },
2045
+ {
2046
+ "epoch": 1.18,
2047
+ "learning_rate": 0.00018447457926522453,
2048
+ "loss": 0.5014,
2049
+ "step": 336
2050
+ },
2051
+ {
2052
+ "epoch": 1.19,
2053
+ "learning_rate": 0.00018306950200487165,
2054
+ "loss": 0.4703,
2055
+ "step": 337
2056
+ },
2057
+ {
2058
+ "epoch": 1.19,
2059
+ "learning_rate": 0.0001816666985067167,
2060
+ "loss": 0.4909,
2061
+ "step": 338
2062
+ },
2063
+ {
2064
+ "epoch": 1.19,
2065
+ "learning_rate": 0.0001802662164267858,
2066
+ "loss": 0.4592,
2067
+ "step": 339
2068
+ },
2069
+ {
2070
+ "epoch": 1.2,
2071
+ "learning_rate": 0.0001788681033422419,
2072
+ "loss": 0.4392,
2073
+ "step": 340
2074
+ },
2075
+ {
2076
+ "epoch": 1.2,
2077
+ "learning_rate": 0.00017747240674976855,
2078
+ "loss": 0.4714,
2079
+ "step": 341
2080
+ },
2081
+ {
2082
+ "epoch": 1.2,
2083
+ "learning_rate": 0.00017607917406395625,
2084
+ "loss": 0.5095,
2085
+ "step": 342
2086
+ },
2087
+ {
2088
+ "epoch": 1.21,
2089
+ "learning_rate": 0.0001746884526156915,
2090
+ "loss": 0.4739,
2091
+ "step": 343
2092
+ },
2093
+ {
2094
+ "epoch": 1.21,
2095
+ "learning_rate": 0.00017330028965054924,
2096
+ "loss": 0.4514,
2097
+ "step": 344
2098
+ },
2099
+ {
2100
+ "epoch": 1.21,
2101
+ "learning_rate": 0.00017191473232718775,
2102
+ "loss": 0.5462,
2103
+ "step": 345
2104
+ },
2105
+ {
2106
+ "epoch": 1.22,
2107
+ "learning_rate": 0.00017053182771574634,
2108
+ "loss": 0.4647,
2109
+ "step": 346
2110
+ },
2111
+ {
2112
+ "epoch": 1.22,
2113
+ "learning_rate": 0.00016915162279624625,
2114
+ "loss": 0.4706,
2115
+ "step": 347
2116
+ },
2117
+ {
2118
+ "epoch": 1.22,
2119
+ "learning_rate": 0.00016777416445699507,
2120
+ "loss": 0.4885,
2121
+ "step": 348
2122
+ },
2123
+ {
2124
+ "epoch": 1.23,
2125
+ "learning_rate": 0.0001663994994929936,
2126
+ "loss": 0.4365,
2127
+ "step": 349
2128
+ },
2129
+ {
2130
+ "epoch": 1.23,
2131
+ "learning_rate": 0.00016502767460434587,
2132
+ "loss": 0.5016,
2133
+ "step": 350
2134
+ },
2135
+ {
2136
+ "epoch": 1.24,
2137
+ "learning_rate": 0.00016365873639467314,
2138
+ "loss": 0.4837,
2139
+ "step": 351
2140
+ },
2141
+ {
2142
+ "epoch": 1.24,
2143
+ "learning_rate": 0.00016229273136953026,
2144
+ "loss": 0.4126,
2145
+ "step": 352
2146
+ },
2147
+ {
2148
+ "epoch": 1.24,
2149
+ "learning_rate": 0.00016092970593482636,
2150
+ "loss": 0.5363,
2151
+ "step": 353
2152
+ },
2153
+ {
2154
+ "epoch": 1.25,
2155
+ "learning_rate": 0.0001595697063952473,
2156
+ "loss": 0.5038,
2157
+ "step": 354
2158
+ },
2159
+ {
2160
+ "epoch": 1.25,
2161
+ "learning_rate": 0.00015821277895268382,
2162
+ "loss": 0.4651,
2163
+ "step": 355
2164
+ },
2165
+ {
2166
+ "epoch": 1.25,
2167
+ "learning_rate": 0.0001568589697046612,
2168
+ "loss": 0.4944,
2169
+ "step": 356
2170
+ },
2171
+ {
2172
+ "epoch": 1.26,
2173
+ "learning_rate": 0.0001555083246427734,
2174
+ "loss": 0.4825,
2175
+ "step": 357
2176
+ },
2177
+ {
2178
+ "epoch": 1.26,
2179
+ "learning_rate": 0.00015416088965112073,
2180
+ "loss": 0.4307,
2181
+ "step": 358
2182
+ },
2183
+ {
2184
+ "epoch": 1.26,
2185
+ "learning_rate": 0.00015281671050475104,
2186
+ "loss": 0.4316,
2187
+ "step": 359
2188
+ },
2189
+ {
2190
+ "epoch": 1.27,
2191
+ "learning_rate": 0.00015147583286810484,
2192
+ "loss": 0.5455,
2193
+ "step": 360
2194
+ },
2195
+ {
2196
+ "epoch": 1.27,
2197
+ "learning_rate": 0.00015013830229346326,
2198
+ "loss": 0.4345,
2199
+ "step": 361
2200
+ },
2201
+ {
2202
+ "epoch": 1.27,
2203
+ "learning_rate": 0.00014880416421940155,
2204
+ "loss": 0.5216,
2205
+ "step": 362
2206
+ },
2207
+ {
2208
+ "epoch": 1.28,
2209
+ "learning_rate": 0.00014747346396924482,
2210
+ "loss": 0.4518,
2211
+ "step": 363
2212
+ },
2213
+ {
2214
+ "epoch": 1.28,
2215
+ "learning_rate": 0.0001461462467495284,
2216
+ "loss": 0.5116,
2217
+ "step": 364
2218
+ },
2219
+ {
2220
+ "epoch": 1.29,
2221
+ "learning_rate": 0.00014482255764846226,
2222
+ "loss": 0.5125,
2223
+ "step": 365
2224
+ },
2225
+ {
2226
+ "epoch": 1.29,
2227
+ "learning_rate": 0.00014350244163439891,
2228
+ "loss": 0.5778,
2229
+ "step": 366
2230
+ },
2231
+ {
2232
+ "epoch": 1.29,
2233
+ "learning_rate": 0.00014218594355430646,
2234
+ "loss": 0.4964,
2235
+ "step": 367
2236
+ },
2237
+ {
2238
+ "epoch": 1.3,
2239
+ "learning_rate": 0.00014087310813224414,
2240
+ "loss": 0.5371,
2241
+ "step": 368
2242
+ },
2243
+ {
2244
+ "epoch": 1.3,
2245
+ "learning_rate": 0.0001395639799678435,
2246
+ "loss": 0.4608,
2247
+ "step": 369
2248
+ },
2249
+ {
2250
+ "epoch": 1.3,
2251
+ "learning_rate": 0.00013825860353479337,
2252
+ "loss": 0.4868,
2253
+ "step": 370
2254
+ },
2255
+ {
2256
+ "epoch": 1.31,
2257
+ "learning_rate": 0.00013695702317932862,
2258
+ "loss": 0.5318,
2259
+ "step": 371
2260
+ },
2261
+ {
2262
+ "epoch": 1.31,
2263
+ "learning_rate": 0.0001356592831187238,
2264
+ "loss": 0.4313,
2265
+ "step": 372
2266
+ },
2267
+ {
2268
+ "epoch": 1.31,
2269
+ "learning_rate": 0.00013436542743979125,
2270
+ "loss": 0.525,
2271
+ "step": 373
2272
+ },
2273
+ {
2274
+ "epoch": 1.32,
2275
+ "learning_rate": 0.00013307550009738266,
2276
+ "loss": 0.386,
2277
+ "step": 374
2278
+ },
2279
+ {
2280
+ "epoch": 1.32,
2281
+ "learning_rate": 0.00013178954491289692,
2282
+ "loss": 0.4689,
2283
+ "step": 375
2284
+ },
2285
+ {
2286
+ "epoch": 1.32,
2287
+ "learning_rate": 0.00013050760557279024,
2288
+ "loss": 0.465,
2289
+ "step": 376
2290
+ },
2291
+ {
2292
+ "epoch": 1.33,
2293
+ "learning_rate": 0.00012922972562709302,
2294
+ "loss": 0.4812,
2295
+ "step": 377
2296
+ },
2297
+ {
2298
+ "epoch": 1.33,
2299
+ "learning_rate": 0.00012795594848792973,
2300
+ "loss": 0.4999,
2301
+ "step": 378
2302
+ },
2303
+ {
2304
+ "epoch": 1.34,
2305
+ "learning_rate": 0.0001266863174280443,
2306
+ "loss": 0.4398,
2307
+ "step": 379
2308
+ },
2309
+ {
2310
+ "epoch": 1.34,
2311
+ "learning_rate": 0.0001254208755793304,
2312
+ "loss": 0.5315,
2313
+ "step": 380
2314
+ },
2315
+ {
2316
+ "epoch": 1.34,
2317
+ "learning_rate": 0.00012415966593136546,
2318
+ "loss": 0.4359,
2319
+ "step": 381
2320
+ },
2321
+ {
2322
+ "epoch": 1.35,
2323
+ "learning_rate": 0.000122902731329951,
2324
+ "loss": 0.5416,
2325
+ "step": 382
2326
+ },
2327
+ {
2328
+ "epoch": 1.35,
2329
+ "learning_rate": 0.00012165011447565636,
2330
+ "loss": 0.4697,
2331
+ "step": 383
2332
+ },
2333
+ {
2334
+ "epoch": 1.35,
2335
+ "learning_rate": 0.00012040185792236874,
2336
+ "loss": 0.4389,
2337
+ "step": 384
2338
+ },
2339
+ {
2340
+ "epoch": 1.36,
2341
+ "learning_rate": 0.00011915800407584704,
2342
+ "loss": 0.5152,
2343
+ "step": 385
2344
+ },
2345
+ {
2346
+ "epoch": 1.36,
2347
+ "learning_rate": 0.00011791859519228137,
2348
+ "loss": 0.5661,
2349
+ "step": 386
2350
+ },
2351
+ {
2352
+ "epoch": 1.36,
2353
+ "learning_rate": 0.00011668367337685793,
2354
+ "loss": 0.47,
2355
+ "step": 387
2356
+ },
2357
+ {
2358
+ "epoch": 1.37,
2359
+ "learning_rate": 0.00011545328058232798,
2360
+ "loss": 0.5173,
2361
+ "step": 388
2362
+ },
2363
+ {
2364
+ "epoch": 1.37,
2365
+ "learning_rate": 0.00011422745860758296,
2366
+ "loss": 0.5436,
2367
+ "step": 389
2368
+ },
2369
+ {
2370
+ "epoch": 1.37,
2371
+ "learning_rate": 0.00011300624909623464,
2372
+ "loss": 0.495,
2373
+ "step": 390
2374
+ },
2375
+ {
2376
+ "epoch": 1.38,
2377
+ "learning_rate": 0.00011178969353520019,
2378
+ "loss": 0.4903,
2379
+ "step": 391
2380
+ },
2381
+ {
2382
+ "epoch": 1.38,
2383
+ "learning_rate": 0.00011057783325329268,
2384
+ "loss": 0.5159,
2385
+ "step": 392
2386
+ },
2387
+ {
2388
+ "epoch": 1.39,
2389
+ "learning_rate": 0.00010937070941981722,
2390
+ "loss": 0.5128,
2391
+ "step": 393
2392
+ },
2393
+ {
2394
+ "epoch": 1.39,
2395
+ "learning_rate": 0.00010816836304317263,
2396
+ "loss": 0.4602,
2397
+ "step": 394
2398
+ },
2399
+ {
2400
+ "epoch": 1.39,
2401
+ "learning_rate": 0.00010697083496945764,
2402
+ "loss": 0.445,
2403
+ "step": 395
2404
+ },
2405
+ {
2406
+ "epoch": 1.4,
2407
+ "learning_rate": 0.00010577816588108377,
2408
+ "loss": 0.5254,
2409
+ "step": 396
2410
+ },
2411
+ {
2412
+ "epoch": 1.4,
2413
+ "learning_rate": 0.00010459039629539332,
2414
+ "loss": 0.4894,
2415
+ "step": 397
2416
+ },
2417
+ {
2418
+ "epoch": 1.4,
2419
+ "learning_rate": 0.00010340756656328244,
2420
+ "loss": 0.5055,
2421
+ "step": 398
2422
+ },
2423
+ {
2424
+ "epoch": 1.41,
2425
+ "learning_rate": 0.00010222971686783088,
2426
+ "loss": 0.4607,
2427
+ "step": 399
2428
+ },
2429
+ {
2430
+ "epoch": 1.41,
2431
+ "learning_rate": 0.00010105688722293644,
2432
+ "loss": 0.4432,
2433
+ "step": 400
2434
+ },
2435
+ {
2436
+ "epoch": 1.41,
2437
+ "learning_rate": 9.988911747195604e-05,
2438
+ "loss": 0.4167,
2439
+ "step": 401
2440
+ },
2441
+ {
2442
+ "epoch": 1.42,
2443
+ "learning_rate": 9.872644728635166e-05,
2444
+ "loss": 0.5107,
2445
+ "step": 402
2446
+ },
2447
+ {
2448
+ "epoch": 1.42,
2449
+ "learning_rate": 9.756891616434302e-05,
2450
+ "loss": 0.606,
2451
+ "step": 403
2452
+ },
2453
+ {
2454
+ "epoch": 1.42,
2455
+ "learning_rate": 9.641656342956576e-05,
2456
+ "loss": 0.4947,
2457
+ "step": 404
2458
+ },
2459
+ {
2460
+ "epoch": 1.43,
2461
+ "learning_rate": 9.526942822973523e-05,
2462
+ "loss": 0.5628,
2463
+ "step": 405
2464
+ },
2465
+ {
2466
+ "epoch": 1.43,
2467
+ "learning_rate": 9.412754953531663e-05,
2468
+ "loss": 0.4475,
2469
+ "step": 406
2470
+ },
2471
+ {
2472
+ "epoch": 1.43,
2473
+ "learning_rate": 9.299096613820152e-05,
2474
+ "loss": 0.5077,
2475
+ "step": 407
2476
+ },
2477
+ {
2478
+ "epoch": 1.44,
2479
+ "learning_rate": 9.185971665038959e-05,
2480
+ "loss": 0.4719,
2481
+ "step": 408
2482
+ },
2483
+ {
2484
+ "epoch": 1.44,
2485
+ "learning_rate": 9.073383950267683e-05,
2486
+ "loss": 0.4542,
2487
+ "step": 409
2488
+ },
2489
+ {
2490
+ "epoch": 1.45,
2491
+ "learning_rate": 8.96133729433502e-05,
2492
+ "loss": 0.4706,
2493
+ "step": 410
2494
+ },
2495
+ {
2496
+ "epoch": 1.45,
2497
+ "learning_rate": 8.849835503688847e-05,
2498
+ "loss": 0.4846,
2499
+ "step": 411
2500
+ },
2501
+ {
2502
+ "epoch": 1.45,
2503
+ "learning_rate": 8.738882366266848e-05,
2504
+ "loss": 0.4589,
2505
+ "step": 412
2506
+ },
2507
+ {
2508
+ "epoch": 1.46,
2509
+ "learning_rate": 8.628481651367875e-05,
2510
+ "loss": 0.5083,
2511
+ "step": 413
2512
+ },
2513
+ {
2514
+ "epoch": 1.46,
2515
+ "learning_rate": 8.518637109523899e-05,
2516
+ "loss": 0.5076,
2517
+ "step": 414
2518
+ },
2519
+ {
2520
+ "epoch": 1.46,
2521
+ "learning_rate": 8.409352472372595e-05,
2522
+ "loss": 0.4556,
2523
+ "step": 415
2524
+ },
2525
+ {
2526
+ "epoch": 1.47,
2527
+ "learning_rate": 8.30063145253053e-05,
2528
+ "loss": 0.4898,
2529
+ "step": 416
2530
+ },
2531
+ {
2532
+ "epoch": 1.47,
2533
+ "learning_rate": 8.192477743467078e-05,
2534
+ "loss": 0.4479,
2535
+ "step": 417
2536
+ },
2537
+ {
2538
+ "epoch": 1.47,
2539
+ "learning_rate": 8.084895019378965e-05,
2540
+ "loss": 0.5159,
2541
+ "step": 418
2542
+ },
2543
+ {
2544
+ "epoch": 1.48,
2545
+ "learning_rate": 7.97788693506539e-05,
2546
+ "loss": 0.5399,
2547
+ "step": 419
2548
+ },
2549
+ {
2550
+ "epoch": 1.48,
2551
+ "learning_rate": 7.871457125803897e-05,
2552
+ "loss": 0.4997,
2553
+ "step": 420
2554
+ },
2555
+ {
2556
+ "epoch": 1.48,
2557
+ "eval_loss": 0.6151015758514404,
2558
+ "eval_runtime": 198.8239,
2559
+ "eval_samples_per_second": 2.801,
2560
+ "eval_steps_per_second": 0.352,
2561
+ "step": 420
2562
+ },
2563
+ {
2564
+ "epoch": 1.48,
2565
+ "learning_rate": 7.7656092072269e-05,
2566
+ "loss": 0.4932,
2567
+ "step": 421
2568
+ },
2569
+ {
2570
+ "epoch": 1.49,
2571
+ "learning_rate": 7.660346775198809e-05,
2572
+ "loss": 0.5201,
2573
+ "step": 422
2574
+ },
2575
+ {
2576
+ "epoch": 1.49,
2577
+ "learning_rate": 7.555673405693886e-05,
2578
+ "loss": 0.4777,
2579
+ "step": 423
2580
+ },
2581
+ {
2582
+ "epoch": 1.5,
2583
+ "learning_rate": 7.451592654674786e-05,
2584
+ "loss": 0.5305,
2585
+ "step": 424
2586
+ },
2587
+ {
2588
+ "epoch": 1.5,
2589
+ "learning_rate": 7.348108057971728e-05,
2590
+ "loss": 0.5176,
2591
+ "step": 425
2592
+ },
2593
+ {
2594
+ "epoch": 1.5,
2595
+ "learning_rate": 7.245223131162376e-05,
2596
+ "loss": 0.5056,
2597
+ "step": 426
2598
+ },
2599
+ {
2600
+ "epoch": 1.51,
2601
+ "learning_rate": 7.142941369452411e-05,
2602
+ "loss": 0.4603,
2603
+ "step": 427
2604
+ },
2605
+ {
2606
+ "epoch": 1.51,
2607
+ "learning_rate": 7.041266247556813e-05,
2608
+ "loss": 0.4812,
2609
+ "step": 428
2610
+ },
2611
+ {
2612
+ "epoch": 1.51,
2613
+ "learning_rate": 6.940201219581788e-05,
2614
+ "loss": 0.517,
2615
+ "step": 429
2616
+ },
2617
+ {
2618
+ "epoch": 1.52,
2619
+ "learning_rate": 6.839749718907428e-05,
2620
+ "loss": 0.5618,
2621
+ "step": 430
2622
+ },
2623
+ {
2624
+ "epoch": 1.52,
2625
+ "learning_rate": 6.739915158071106e-05,
2626
+ "loss": 0.5113,
2627
+ "step": 431
2628
+ },
2629
+ {
2630
+ "epoch": 1.52,
2631
+ "learning_rate": 6.640700928651508e-05,
2632
+ "loss": 0.5053,
2633
+ "step": 432
2634
+ },
2635
+ {
2636
+ "epoch": 1.53,
2637
+ "learning_rate": 6.542110401153426e-05,
2638
+ "loss": 0.4828,
2639
+ "step": 433
2640
+ },
2641
+ {
2642
+ "epoch": 1.53,
2643
+ "learning_rate": 6.444146924893252e-05,
2644
+ "loss": 0.4571,
2645
+ "step": 434
2646
+ },
2647
+ {
2648
+ "epoch": 1.53,
2649
+ "learning_rate": 6.346813827885218e-05,
2650
+ "loss": 0.4938,
2651
+ "step": 435
2652
+ },
2653
+ {
2654
+ "epoch": 1.54,
2655
+ "learning_rate": 6.250114416728297e-05,
2656
+ "loss": 0.4745,
2657
+ "step": 436
2658
+ },
2659
+ {
2660
+ "epoch": 1.54,
2661
+ "learning_rate": 6.154051976493898e-05,
2662
+ "loss": 0.4098,
2663
+ "step": 437
2664
+ },
2665
+ {
2666
+ "epoch": 1.55,
2667
+ "learning_rate": 6.058629770614274e-05,
2668
+ "loss": 0.5036,
2669
+ "step": 438
2670
+ },
2671
+ {
2672
+ "epoch": 1.55,
2673
+ "learning_rate": 5.96385104077164e-05,
2674
+ "loss": 0.466,
2675
+ "step": 439
2676
+ },
2677
+ {
2678
+ "epoch": 1.55,
2679
+ "learning_rate": 5.869719006788032e-05,
2680
+ "loss": 0.5415,
2681
+ "step": 440
2682
+ },
2683
+ {
2684
+ "epoch": 1.56,
2685
+ "learning_rate": 5.776236866515946e-05,
2686
+ "loss": 0.5179,
2687
+ "step": 441
2688
+ },
2689
+ {
2690
+ "epoch": 1.56,
2691
+ "learning_rate": 5.6834077957297225e-05,
2692
+ "loss": 0.5271,
2693
+ "step": 442
2694
+ },
2695
+ {
2696
+ "epoch": 1.56,
2697
+ "learning_rate": 5.5912349480175955e-05,
2698
+ "loss": 0.448,
2699
+ "step": 443
2700
+ },
2701
+ {
2702
+ "epoch": 1.57,
2703
+ "learning_rate": 5.499721454674608e-05,
2704
+ "loss": 0.4831,
2705
+ "step": 444
2706
+ },
2707
+ {
2708
+ "epoch": 1.57,
2709
+ "learning_rate": 5.4088704245962376e-05,
2710
+ "loss": 0.5227,
2711
+ "step": 445
2712
+ },
2713
+ {
2714
+ "epoch": 1.57,
2715
+ "learning_rate": 5.3186849441727524e-05,
2716
+ "loss": 0.4825,
2717
+ "step": 446
2718
+ },
2719
+ {
2720
+ "epoch": 1.58,
2721
+ "learning_rate": 5.229168077184365e-05,
2722
+ "loss": 0.3757,
2723
+ "step": 447
2724
+ },
2725
+ {
2726
+ "epoch": 1.58,
2727
+ "learning_rate": 5.1403228646971835e-05,
2728
+ "loss": 0.4671,
2729
+ "step": 448
2730
+ },
2731
+ {
2732
+ "epoch": 1.58,
2733
+ "learning_rate": 5.052152324959866e-05,
2734
+ "loss": 0.4731,
2735
+ "step": 449
2736
+ },
2737
+ {
2738
+ "epoch": 1.59,
2739
+ "learning_rate": 4.9646594533010875e-05,
2740
+ "loss": 0.4625,
2741
+ "step": 450
2742
+ },
2743
+ {
2744
+ "epoch": 1.59,
2745
+ "learning_rate": 4.877847222027787e-05,
2746
+ "loss": 0.4626,
2747
+ "step": 451
2748
+ },
2749
+ {
2750
+ "epoch": 1.6,
2751
+ "learning_rate": 4.79171858032422e-05,
2752
+ "loss": 0.4639,
2753
+ "step": 452
2754
+ },
2755
+ {
2756
+ "epoch": 1.6,
2757
+ "learning_rate": 4.706276454151717e-05,
2758
+ "loss": 0.5474,
2759
+ "step": 453
2760
+ },
2761
+ {
2762
+ "epoch": 1.6,
2763
+ "learning_rate": 4.621523746149317e-05,
2764
+ "loss": 0.4318,
2765
+ "step": 454
2766
+ },
2767
+ {
2768
+ "epoch": 1.61,
2769
+ "learning_rate": 4.537463335535161e-05,
2770
+ "loss": 0.4204,
2771
+ "step": 455
2772
+ },
2773
+ {
2774
+ "epoch": 1.61,
2775
+ "learning_rate": 4.454098078008667e-05,
2776
+ "loss": 0.4811,
2777
+ "step": 456
2778
+ },
2779
+ {
2780
+ "epoch": 1.61,
2781
+ "learning_rate": 4.3714308056535144e-05,
2782
+ "loss": 0.4637,
2783
+ "step": 457
2784
+ },
2785
+ {
2786
+ "epoch": 1.62,
2787
+ "learning_rate": 4.289464326841433e-05,
2788
+ "loss": 0.4446,
2789
+ "step": 458
2790
+ },
2791
+ {
2792
+ "epoch": 1.62,
2793
+ "learning_rate": 4.208201426136818e-05,
2794
+ "loss": 0.4835,
2795
+ "step": 459
2796
+ },
2797
+ {
2798
+ "epoch": 1.62,
2799
+ "learning_rate": 4.1276448642021045e-05,
2800
+ "loss": 0.5123,
2801
+ "step": 460
2802
+ },
2803
+ {
2804
+ "epoch": 1.63,
2805
+ "learning_rate": 4.047797377703985e-05,
2806
+ "loss": 0.4797,
2807
+ "step": 461
2808
+ },
2809
+ {
2810
+ "epoch": 1.63,
2811
+ "learning_rate": 3.968661679220467e-05,
2812
+ "loss": 0.4424,
2813
+ "step": 462
2814
+ },
2815
+ {
2816
+ "epoch": 1.63,
2817
+ "learning_rate": 3.890240457148711e-05,
2818
+ "loss": 0.5405,
2819
+ "step": 463
2820
+ },
2821
+ {
2822
+ "epoch": 1.64,
2823
+ "learning_rate": 3.8125363756136484e-05,
2824
+ "loss": 0.4412,
2825
+ "step": 464
2826
+ },
2827
+ {
2828
+ "epoch": 1.64,
2829
+ "learning_rate": 3.7355520743775626e-05,
2830
+ "loss": 0.4988,
2831
+ "step": 465
2832
+ },
2833
+ {
2834
+ "epoch": 1.65,
2835
+ "learning_rate": 3.6592901687503564e-05,
2836
+ "loss": 0.4874,
2837
+ "step": 466
2838
+ },
2839
+ {
2840
+ "epoch": 1.65,
2841
+ "learning_rate": 3.583753249500707e-05,
2842
+ "loss": 0.4893,
2843
+ "step": 467
2844
+ },
2845
+ {
2846
+ "epoch": 1.65,
2847
+ "learning_rate": 3.508943882768065e-05,
2848
+ "loss": 0.4555,
2849
+ "step": 468
2850
+ },
2851
+ {
2852
+ "epoch": 1.66,
2853
+ "learning_rate": 3.43486460997548e-05,
2854
+ "loss": 0.4939,
2855
+ "step": 469
2856
+ },
2857
+ {
2858
+ "epoch": 1.66,
2859
+ "learning_rate": 3.361517947743265e-05,
2860
+ "loss": 0.4607,
2861
+ "step": 470
2862
+ },
2863
+ {
2864
+ "epoch": 1.66,
2865
+ "learning_rate": 3.288906387803464e-05,
2866
+ "loss": 0.5049,
2867
+ "step": 471
2868
+ },
2869
+ {
2870
+ "epoch": 1.67,
2871
+ "learning_rate": 3.217032396915265e-05,
2872
+ "loss": 0.4791,
2873
+ "step": 472
2874
+ },
2875
+ {
2876
+ "epoch": 1.67,
2877
+ "learning_rate": 3.1458984167811594e-05,
2878
+ "loss": 0.4995,
2879
+ "step": 473
2880
+ },
2881
+ {
2882
+ "epoch": 1.67,
2883
+ "learning_rate": 3.0755068639639924e-05,
2884
+ "loss": 0.4018,
2885
+ "step": 474
2886
+ },
2887
+ {
2888
+ "epoch": 1.68,
2889
+ "learning_rate": 3.005860129804877e-05,
2890
+ "loss": 0.4718,
2891
+ "step": 475
2892
+ },
2893
+ {
2894
+ "epoch": 1.68,
2895
+ "learning_rate": 2.9369605803419713e-05,
2896
+ "loss": 0.4302,
2897
+ "step": 476
2898
+ },
2899
+ {
2900
+ "epoch": 1.68,
2901
+ "learning_rate": 2.8688105562300587e-05,
2902
+ "loss": 0.5425,
2903
+ "step": 477
2904
+ },
2905
+ {
2906
+ "epoch": 1.69,
2907
+ "learning_rate": 2.8014123726610635e-05,
2908
+ "loss": 0.4779,
2909
+ "step": 478
2910
+ },
2911
+ {
2912
+ "epoch": 1.69,
2913
+ "learning_rate": 2.7347683192853995e-05,
2914
+ "loss": 0.5093,
2915
+ "step": 479
2916
+ },
2917
+ {
2918
+ "epoch": 1.7,
2919
+ "learning_rate": 2.6688806601341765e-05,
2920
+ "loss": 0.4631,
2921
+ "step": 480
2922
+ },
2923
+ {
2924
+ "epoch": 1.7,
2925
+ "learning_rate": 2.603751633542273e-05,
2926
+ "loss": 0.5296,
2927
+ "step": 481
2928
+ },
2929
+ {
2930
+ "epoch": 1.7,
2931
+ "learning_rate": 2.5393834520723164e-05,
2932
+ "loss": 0.639,
2933
+ "step": 482
2934
+ },
2935
+ {
2936
+ "epoch": 1.71,
2937
+ "learning_rate": 2.4757783024395242e-05,
2938
+ "loss": 0.4798,
2939
+ "step": 483
2940
+ },
2941
+ {
2942
+ "epoch": 1.71,
2943
+ "learning_rate": 2.412938345437385e-05,
2944
+ "loss": 0.52,
2945
+ "step": 484
2946
+ },
2947
+ {
2948
+ "epoch": 1.71,
2949
+ "learning_rate": 2.3508657158642783e-05,
2950
+ "loss": 0.5141,
2951
+ "step": 485
2952
+ },
2953
+ {
2954
+ "epoch": 1.72,
2955
+ "learning_rate": 2.289562522450947e-05,
2956
+ "loss": 0.5019,
2957
+ "step": 486
2958
+ },
2959
+ {
2960
+ "epoch": 1.72,
2961
+ "learning_rate": 2.229030847788868e-05,
2962
+ "loss": 0.4782,
2963
+ "step": 487
2964
+ },
2965
+ {
2966
+ "epoch": 1.72,
2967
+ "learning_rate": 2.1692727482594542e-05,
2968
+ "loss": 0.518,
2969
+ "step": 488
2970
+ },
2971
+ {
2972
+ "epoch": 1.73,
2973
+ "learning_rate": 2.1102902539642725e-05,
2974
+ "loss": 0.4981,
2975
+ "step": 489
2976
+ },
2977
+ {
2978
+ "epoch": 1.73,
2979
+ "learning_rate": 2.0520853686560177e-05,
2980
+ "loss": 0.426,
2981
+ "step": 490
2982
+ },
2983
+ {
2984
+ "epoch": 1.73,
2985
+ "learning_rate": 1.9946600696704592e-05,
2986
+ "loss": 0.4998,
2987
+ "step": 491
2988
+ },
2989
+ {
2990
+ "epoch": 1.74,
2991
+ "learning_rate": 1.9380163078592667e-05,
2992
+ "loss": 0.4775,
2993
+ "step": 492
2994
+ },
2995
+ {
2996
+ "epoch": 1.74,
2997
+ "learning_rate": 1.8821560075237444e-05,
2998
+ "loss": 0.4904,
2999
+ "step": 493
3000
+ },
3001
+ {
3002
+ "epoch": 1.75,
3003
+ "learning_rate": 1.827081066349459e-05,
3004
+ "loss": 0.4876,
3005
+ "step": 494
3006
+ },
3007
+ {
3008
+ "epoch": 1.75,
3009
+ "learning_rate": 1.7727933553417342e-05,
3010
+ "loss": 0.4773,
3011
+ "step": 495
3012
+ },
3013
+ {
3014
+ "epoch": 1.75,
3015
+ "learning_rate": 1.719294718762143e-05,
3016
+ "loss": 0.486,
3017
+ "step": 496
3018
+ },
3019
+ {
3020
+ "epoch": 1.76,
3021
+ "learning_rate": 1.6665869740658312e-05,
3022
+ "loss": 0.5171,
3023
+ "step": 497
3024
+ },
3025
+ {
3026
+ "epoch": 1.76,
3027
+ "learning_rate": 1.6146719118397602e-05,
3028
+ "loss": 0.4989,
3029
+ "step": 498
3030
+ },
3031
+ {
3032
+ "epoch": 1.76,
3033
+ "learning_rate": 1.5635512957418914e-05,
3034
+ "loss": 0.4892,
3035
+ "step": 499
3036
+ },
3037
+ {
3038
+ "epoch": 1.77,
3039
+ "learning_rate": 1.513226862441286e-05,
3040
+ "loss": 0.5041,
3041
+ "step": 500
3042
+ },
3043
+ {
3044
+ "epoch": 1.77,
3045
+ "learning_rate": 1.463700321559075e-05,
3046
+ "loss": 0.504,
3047
+ "step": 501
3048
+ },
3049
+ {
3050
+ "epoch": 1.77,
3051
+ "learning_rate": 1.4149733556103994e-05,
3052
+ "loss": 0.4338,
3053
+ "step": 502
3054
+ },
3055
+ {
3056
+ "epoch": 1.78,
3057
+ "learning_rate": 1.3670476199472537e-05,
3058
+ "loss": 0.5795,
3059
+ "step": 503
3060
+ },
3061
+ {
3062
+ "epoch": 1.78,
3063
+ "learning_rate": 1.3199247427022527e-05,
3064
+ "loss": 0.5138,
3065
+ "step": 504
3066
+ },
3067
+ {
3068
+ "epoch": 1.78,
3069
+ "learning_rate": 1.273606324733284e-05,
3070
+ "loss": 0.513,
3071
+ "step": 505
3072
+ },
3073
+ {
3074
+ "epoch": 1.79,
3075
+ "learning_rate": 1.228093939569186e-05,
3076
+ "loss": 0.4021,
3077
+ "step": 506
3078
+ },
3079
+ {
3080
+ "epoch": 1.79,
3081
+ "learning_rate": 1.1833891333562441e-05,
3082
+ "loss": 0.4603,
3083
+ "step": 507
3084
+ },
3085
+ {
3086
+ "epoch": 1.8,
3087
+ "learning_rate": 1.1394934248056764e-05,
3088
+ "loss": 0.5092,
3089
+ "step": 508
3090
+ },
3091
+ {
3092
+ "epoch": 1.8,
3093
+ "learning_rate": 1.0964083051420464e-05,
3094
+ "loss": 0.4402,
3095
+ "step": 509
3096
+ },
3097
+ {
3098
+ "epoch": 1.8,
3099
+ "learning_rate": 1.0541352380526086e-05,
3100
+ "loss": 0.4754,
3101
+ "step": 510
3102
+ },
3103
+ {
3104
+ "epoch": 1.81,
3105
+ "learning_rate": 1.0126756596375685e-05,
3106
+ "loss": 0.4785,
3107
+ "step": 511
3108
+ },
3109
+ {
3110
+ "epoch": 1.81,
3111
+ "learning_rate": 9.720309783612935e-06,
3112
+ "loss": 0.5453,
3113
+ "step": 512
3114
+ },
3115
+ {
3116
+ "epoch": 1.81,
3117
+ "learning_rate": 9.322025750044871e-06,
3118
+ "loss": 0.4536,
3119
+ "step": 513
3120
+ },
3121
+ {
3122
+ "epoch": 1.82,
3123
+ "learning_rate": 8.931918026172714e-06,
3124
+ "loss": 0.4639,
3125
+ "step": 514
3126
+ },
3127
+ {
3128
+ "epoch": 1.82,
3129
+ "learning_rate": 8.54999986473201e-06,
3130
+ "loss": 0.4571,
3131
+ "step": 515
3132
+ },
3133
+ {
3134
+ "epoch": 1.82,
3135
+ "learning_rate": 8.176284240242638e-06,
3136
+ "loss": 0.4553,
3137
+ "step": 516
3138
+ },
3139
+ {
3140
+ "epoch": 1.83,
3141
+ "learning_rate": 7.810783848568066e-06,
3142
+ "loss": 0.5058,
3143
+ "step": 517
3144
+ },
3145
+ {
3146
+ "epoch": 1.83,
3147
+ "learning_rate": 7.453511106483902e-06,
3148
+ "loss": 0.4727,
3149
+ "step": 518
3150
+ },
3151
+ {
3152
+ "epoch": 1.83,
3153
+ "learning_rate": 7.104478151256005e-06,
3154
+ "loss": 0.5874,
3155
+ "step": 519
3156
+ },
3157
+ {
3158
+ "epoch": 1.84,
3159
+ "learning_rate": 6.763696840228456e-06,
3160
+ "loss": 0.4752,
3161
+ "step": 520
3162
+ },
3163
+ {
3164
+ "epoch": 1.84,
3165
+ "learning_rate": 6.4311787504205135e-06,
3166
+ "loss": 0.4508,
3167
+ "step": 521
3168
+ },
3169
+ {
3170
+ "epoch": 1.84,
3171
+ "learning_rate": 6.1069351781333216e-06,
3172
+ "loss": 0.4929,
3173
+ "step": 522
3174
+ },
3175
+ {
3176
+ "epoch": 1.85,
3177
+ "learning_rate": 5.790977138566161e-06,
3178
+ "loss": 0.4245,
3179
+ "step": 523
3180
+ },
3181
+ {
3182
+ "epoch": 1.85,
3183
+ "learning_rate": 5.483315365442443e-06,
3184
+ "loss": 0.4372,
3185
+ "step": 524
3186
+ },
3187
+ {
3188
+ "epoch": 1.86,
3189
+ "learning_rate": 5.183960310644747e-06,
3190
+ "loss": 0.4755,
3191
+ "step": 525
3192
+ },
3193
+ {
3194
+ "epoch": 1.86,
3195
+ "learning_rate": 4.892922143859918e-06,
3196
+ "loss": 0.4648,
3197
+ "step": 526
3198
+ },
3199
+ {
3200
+ "epoch": 1.86,
3201
+ "learning_rate": 4.61021075223364e-06,
3202
+ "loss": 0.465,
3203
+ "step": 527
3204
+ },
3205
+ {
3206
+ "epoch": 1.87,
3207
+ "learning_rate": 4.335835740034516e-06,
3208
+ "loss": 0.4937,
3209
+ "step": 528
3210
+ },
3211
+ {
3212
+ "epoch": 1.87,
3213
+ "learning_rate": 4.069806428327522e-06,
3214
+ "loss": 0.486,
3215
+ "step": 529
3216
+ },
3217
+ {
3218
+ "epoch": 1.87,
3219
+ "learning_rate": 3.812131854657813e-06,
3220
+ "loss": 0.5037,
3221
+ "step": 530
3222
+ },
3223
+ {
3224
+ "epoch": 1.88,
3225
+ "learning_rate": 3.5628207727433912e-06,
3226
+ "loss": 0.4823,
3227
+ "step": 531
3228
+ },
3229
+ {
3230
+ "epoch": 1.88,
3231
+ "learning_rate": 3.3218816521777827e-06,
3232
+ "loss": 0.4627,
3233
+ "step": 532
3234
+ },
3235
+ {
3236
+ "epoch": 1.88,
3237
+ "learning_rate": 3.0893226781423258e-06,
3238
+ "loss": 0.4894,
3239
+ "step": 533
3240
+ },
3241
+ {
3242
+ "epoch": 1.89,
3243
+ "learning_rate": 2.8651517511281697e-06,
3244
+ "loss": 0.4826,
3245
+ "step": 534
3246
+ },
3247
+ {
3248
+ "epoch": 1.89,
3249
+ "learning_rate": 2.649376486667743e-06,
3250
+ "loss": 0.4793,
3251
+ "step": 535
3252
+ },
3253
+ {
3254
+ "epoch": 1.89,
3255
+ "learning_rate": 2.4420042150761214e-06,
3256
+ "loss": 0.4506,
3257
+ "step": 536
3258
+ },
3259
+ {
3260
+ "epoch": 1.9,
3261
+ "learning_rate": 2.2430419812020374e-06,
3262
+ "loss": 0.4904,
3263
+ "step": 537
3264
+ },
3265
+ {
3266
+ "epoch": 1.9,
3267
+ "learning_rate": 2.052496544188487e-06,
3268
+ "loss": 0.4514,
3269
+ "step": 538
3270
+ },
3271
+ {
3272
+ "epoch": 1.91,
3273
+ "learning_rate": 1.8703743772430782e-06,
3274
+ "loss": 0.5149,
3275
+ "step": 539
3276
+ },
3277
+ {
3278
+ "epoch": 1.91,
3279
+ "learning_rate": 1.6966816674182372e-06,
3280
+ "loss": 0.5111,
3281
+ "step": 540
3282
+ },
3283
+ {
3284
+ "epoch": 1.91,
3285
+ "learning_rate": 1.531424315400931e-06,
3286
+ "loss": 0.5379,
3287
+ "step": 541
3288
+ },
3289
+ {
3290
+ "epoch": 1.92,
3291
+ "learning_rate": 1.374607935312272e-06,
3292
+ "loss": 0.4893,
3293
+ "step": 542
3294
+ },
3295
+ {
3296
+ "epoch": 1.92,
3297
+ "learning_rate": 1.2262378545166707e-06,
3298
+ "loss": 0.3815,
3299
+ "step": 543
3300
+ },
3301
+ {
3302
+ "epoch": 1.92,
3303
+ "learning_rate": 1.0863191134410643e-06,
3304
+ "loss": 0.4226,
3305
+ "step": 544
3306
+ },
3307
+ {
3308
+ "epoch": 1.93,
3309
+ "learning_rate": 9.548564654034974e-07,
3310
+ "loss": 0.4907,
3311
+ "step": 545
3312
+ },
3313
+ {
3314
+ "epoch": 1.93,
3315
+ "learning_rate": 8.318543764516961e-07,
3316
+ "loss": 0.4648,
3317
+ "step": 546
3318
+ },
3319
+ {
3320
+ "epoch": 1.93,
3321
+ "learning_rate": 7.173170252113559e-07,
3322
+ "loss": 0.5363,
3323
+ "step": 547
3324
+ },
3325
+ {
3326
+ "epoch": 1.94,
3327
+ "learning_rate": 6.11248302744255e-07,
3328
+ "loss": 0.5549,
3329
+ "step": 548
3330
+ },
3331
+ {
3332
+ "epoch": 1.94,
3333
+ "learning_rate": 5.136518124159162e-07,
3334
+ "loss": 0.5403,
3335
+ "step": 549
3336
+ },
3337
+ {
3338
+ "epoch": 1.94,
3339
+ "learning_rate": 4.2453086977334297e-07,
3340
+ "loss": 0.446,
3341
+ "step": 550
3342
+ },
3343
+ {
3344
+ "epoch": 1.95,
3345
+ "learning_rate": 3.4388850243227687e-07,
3346
+ "loss": 0.577,
3347
+ "step": 551
3348
+ },
3349
+ {
3350
+ "epoch": 1.95,
3351
+ "learning_rate": 2.717274499744182e-07,
3352
+ "loss": 0.4708,
3353
+ "step": 552
3354
+ },
3355
+ {
3356
+ "epoch": 1.96,
3357
+ "learning_rate": 2.0805016385427867e-07,
3358
+ "loss": 0.462,
3359
+ "step": 553
3360
+ },
3361
+ {
3362
+ "epoch": 1.96,
3363
+ "learning_rate": 1.5285880731599755e-07,
3364
+ "loss": 0.3966,
3365
+ "step": 554
3366
+ },
3367
+ {
3368
+ "epoch": 1.96,
3369
+ "learning_rate": 1.0615525531978976e-07,
3370
+ "loss": 0.4071,
3371
+ "step": 555
3372
+ },
3373
+ {
3374
+ "epoch": 1.97,
3375
+ "learning_rate": 6.794109447824659e-08,
3376
+ "loss": 0.4859,
3377
+ "step": 556
3378
+ },
3379
+ {
3380
+ "epoch": 1.97,
3381
+ "learning_rate": 3.821762300240672e-08,
3382
+ "loss": 0.5478,
3383
+ "step": 557
3384
+ },
3385
+ {
3386
+ "epoch": 1.97,
3387
+ "learning_rate": 1.69858506578191e-08,
3388
+ "loss": 0.505,
3389
+ "step": 558
3390
+ },
3391
+ {
3392
+ "epoch": 1.98,
3393
+ "learning_rate": 4.2464987299595245e-09,
3394
+ "loss": 0.4193,
3395
+ "step": 559
3396
+ },
3397
+ {
3398
+ "epoch": 1.98,
3399
+ "learning_rate": 0.0,
3400
+ "loss": 0.4168,
3401
+ "step": 560
3402
+ },
3403
+ {
3404
+ "epoch": 1.98,
3405
+ "eval_loss": 0.6130674481391907,
3406
+ "eval_runtime": 198.6175,
3407
+ "eval_samples_per_second": 2.804,
3408
+ "eval_steps_per_second": 0.352,
3409
+ "step": 560
3410
+ }
3411
+ ],
3412
+ "logging_steps": 1,
3413
+ "max_steps": 560,
3414
+ "num_input_tokens_seen": 0,
3415
+ "num_train_epochs": 2,
3416
+ "save_steps": 280,
3417
+ "total_flos": 1.471727602111611e+18,
3418
+ "train_batch_size": 8,
3419
+ "trial_name": null,
3420
+ "trial_params": null
3421
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a0a25f42c874573a7d72b2f014c1738c213fc0e05f60601b6784bfb6210e5aa
3
+ size 4859