--- {} --- ## Example Usage This section demonstrates how to use the `XiaoZhang98/byT5-DRS` model with the Hugging Face Transformers library to process an example sentence. ```python from transformers import AutoTokenizer, T5ForConditionalGeneration # Initialize the tokenizer and model tokenizer = AutoTokenizer.from_pretrained('XiaoZhang98/byT5-DRS', max_length=512) model = T5ForConditionalGeneration.from_pretrained("XiaoZhang98/byT5-DRS") # Example sentence example = "I am a student." # Tokenize and prepare the input x = tokenizer(example, return_tensors='pt', padding=True, truncation=True, max_length=512)['input_ids'] # Generate output output = model.generate(x) # Decode and print the output text pred_text = tokenizer.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(pred_text)