gagan3012 commited on
Commit
df8589e
1 Parent(s): f74f845

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +55 -0
  2. checkpoint-100/README.md +204 -0
  3. checkpoint-100/adapter_config.json +33 -0
  4. checkpoint-100/adapter_model.safetensors +3 -0
  5. checkpoint-100/optimizer.pt +3 -0
  6. checkpoint-100/pytorch_model.bin +3 -0
  7. checkpoint-100/rng_state.pth +3 -0
  8. checkpoint-100/scheduler.pt +3 -0
  9. checkpoint-100/special_tokens_map.json +29 -0
  10. checkpoint-100/tokenizer.json +0 -0
  11. checkpoint-100/tokenizer.model +3 -0
  12. checkpoint-100/tokenizer_config.json +50 -0
  13. checkpoint-100/trainer_state.json +629 -0
  14. checkpoint-100/training_args.bin +3 -0
  15. checkpoint-200/README.md +204 -0
  16. checkpoint-200/adapter_config.json +33 -0
  17. checkpoint-200/adapter_model.safetensors +3 -0
  18. checkpoint-200/optimizer.pt +3 -0
  19. checkpoint-200/pytorch_model.bin +3 -0
  20. checkpoint-200/rng_state.pth +3 -0
  21. checkpoint-200/scheduler.pt +3 -0
  22. checkpoint-200/special_tokens_map.json +29 -0
  23. checkpoint-200/tokenizer.json +0 -0
  24. checkpoint-200/tokenizer.model +3 -0
  25. checkpoint-200/tokenizer_config.json +50 -0
  26. checkpoint-200/trainer_state.json +1237 -0
  27. checkpoint-200/training_args.bin +3 -0
  28. checkpoint-300/README.md +204 -0
  29. checkpoint-300/adapter_config.json +33 -0
  30. checkpoint-300/adapter_model.safetensors +3 -0
  31. checkpoint-300/optimizer.pt +3 -0
  32. checkpoint-300/pytorch_model.bin +3 -0
  33. checkpoint-300/rng_state.pth +3 -0
  34. checkpoint-300/scheduler.pt +3 -0
  35. checkpoint-300/special_tokens_map.json +29 -0
  36. checkpoint-300/tokenizer.json +0 -0
  37. checkpoint-300/tokenizer.model +3 -0
  38. checkpoint-300/tokenizer_config.json +50 -0
  39. checkpoint-300/trainer_state.json +1845 -0
  40. checkpoint-300/training_args.bin +3 -0
  41. checkpoint-400/README.md +204 -0
  42. checkpoint-400/adapter_config.json +33 -0
  43. checkpoint-400/adapter_model.safetensors +3 -0
  44. checkpoint-400/optimizer.pt +3 -0
  45. checkpoint-400/pytorch_model.bin +3 -0
  46. checkpoint-400/rng_state.pth +3 -0
  47. checkpoint-400/scheduler.pt +3 -0
  48. checkpoint-400/special_tokens_map.json +29 -0
  49. checkpoint-400/tokenizer.json +0 -0
  50. checkpoint-400/tokenizer.model +3 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - mistral
7
+ - Eclipse-7B
8
+ pipeline_tag: text-generation
9
+ ---
10
+ # Model Card for Eclipse-7B
11
+
12
+ Mistral-7B-v0.1 model fine-tuned on the Ultrafeedback dataset using techinques shown in the paper [Self-Rewarding Language Models](https://arxiv.org/abs/2401.10020).
13
+
14
+ ## Instruction format
15
+
16
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
17
+
18
+ E.g.
19
+ ```
20
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
21
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
22
+ "[INST] Do you have mayonnaise recipes? [/INST]"
23
+ ```
24
+
25
+ This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
26
+
27
+ ```python
28
+ from transformers import AutoModelForCausalLM, AutoTokenizer
29
+
30
+ device = "cuda" # the device to load the model onto
31
+
32
+ model = AutoModelForCausalLM.from_pretrained("Xenon1/Eclipse-7B")
33
+ tokenizer = AutoTokenizer.from_pretrained("Xenon1/Eclipse-7B")
34
+
35
+ messages = [
36
+ {"role": "user", "content": "What is your favourite condiment?"},
37
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
38
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
39
+ ]
40
+
41
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
42
+
43
+ model_inputs = encodeds.to(device)
44
+ model.to(device)
45
+
46
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
47
+ decoded = tokenizer.batch_decode(generated_ids)
48
+ print(decoded[0])
49
+ ```
50
+
51
+ ## Model Architecture
52
+ This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
53
+ - Grouped-Query Attention
54
+ - Sliding-Window Attention
55
+ - Byte-fallback BPE tokenizer
checkpoint-100/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.2.dev0
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "gate",
24
+ "o_proj",
25
+ "w1",
26
+ "w3",
27
+ "k_proj",
28
+ "v_proj",
29
+ "w2"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_rslora": false
33
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48f339ed60a8b39a9ef374fc7c2b8e37f1731105e5a1304db6312e245f5f6d84
3
+ size 289512208
checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49cad7333bdfa78ba76748e7de058321adc760bd3edd9e43c9151ab6c121a599
3
+ size 579245842
checkpoint-100/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:049c26b844b79121ddd8379f7f69194e63f6fbf6aa007eeac0c66f17eebb8893
3
+ size 888
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c60c4043ea0c138840ee4d7fdcaad9c23c046dc40edae567efa02aaa11f0c98
3
+ size 14244
checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bd67f4fe4158f58507b660bd584f6f3aa80a8710f0d5f5d18e04784a18dc00d
3
+ size 1064
checkpoint-100/special_tokens_map.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": "</s>",
22
+ "unk_token": {
23
+ "content": "<unk>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ }
29
+ }
checkpoint-100/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-100/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-100/tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": true,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<unk>",
32
+ "<s>",
33
+ "</s>"
34
+ ],
35
+ "bos_token": "<s>",
36
+ "clean_up_tokenization_spaces": false,
37
+ "eos_token": "</s>",
38
+ "legacy": true,
39
+ "max_length": null,
40
+ "model_max_length": 255,
41
+ "pad_to_multiple_of": null,
42
+ "pad_token": "</s>",
43
+ "pad_token_type_id": 0,
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "spaces_between_special_tokens": false,
47
+ "tokenizer_class": "LlamaTokenizer",
48
+ "unk_token": "<unk>",
49
+ "use_default_system_prompt": true
50
+ }
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.16181229773462782,
5
+ "eval_steps": 100,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5e-05,
14
+ "loss": 1.9981,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4.9999675930251536e-05,
20
+ "loss": 2.0613,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 4.99987037294078e-05,
26
+ "loss": 1.8228,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 4.99970834226737e-05,
32
+ "loss": 1.707,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 4.999481505205661e-05,
38
+ "loss": 1.5271,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 4.999189867636535e-05,
44
+ "loss": 1.4562,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 4.998833437120866e-05,
50
+ "loss": 1.3805,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 4.998412222899321e-05,
56
+ "loss": 1.2998,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 4.997926235892124e-05,
62
+ "loss": 1.4383,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 4.997375488698769e-05,
68
+ "loss": 1.2441,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 4.996759995597697e-05,
74
+ "loss": 1.2275,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 4.996079772545923e-05,
80
+ "loss": 1.2233,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 4.995334837178625e-05,
86
+ "loss": 1.1886,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 4.9945252088086825e-05,
92
+ "loss": 1.1779,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "learning_rate": 4.993650908426182e-05,
98
+ "loss": 1.1122,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 4.992711958697868e-05,
104
+ "loss": 1.0766,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 4.991708383966556e-05,
110
+ "loss": 1.0836,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 4.9906402102505026e-05,
116
+ "loss": 0.9728,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 4.989507465242732e-05,
122
+ "loss": 0.9883,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.03,
127
+ "learning_rate": 4.988310178310315e-05,
128
+ "loss": 1.0307,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "learning_rate": 4.9870483804936084e-05,
134
+ "loss": 0.9613,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 4.9857221045054535e-05,
140
+ "loss": 1.1038,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 4.9843313847303246e-05,
146
+ "loss": 0.9206,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 4.9828762572234374e-05,
152
+ "loss": 0.9893,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 4.9813567597098166e-05,
158
+ "loss": 0.8328,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.04,
163
+ "learning_rate": 4.979772931583317e-05,
164
+ "loss": 0.8712,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.04,
169
+ "learning_rate": 4.978124813905599e-05,
170
+ "loss": 0.8031,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 4.976412449405072e-05,
176
+ "loss": 0.7675,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 4.974635882475778e-05,
182
+ "loss": 0.7851,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 4.972795159176243e-05,
188
+ "loss": 0.7447,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 4.9708903272282884e-05,
194
+ "loss": 0.7719,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.05,
199
+ "learning_rate": 4.9689214360157844e-05,
200
+ "loss": 0.7142,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.05,
205
+ "learning_rate": 4.9668885365833795e-05,
206
+ "loss": 0.8649,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 4.96479168163517e-05,
212
+ "loss": 0.7574,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 4.9626309255333346e-05,
218
+ "loss": 0.9205,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 4.9604063242967315e-05,
224
+ "loss": 0.7987,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.06,
229
+ "learning_rate": 4.958117935599434e-05,
230
+ "loss": 0.7626,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.06,
235
+ "learning_rate": 4.955765818769249e-05,
236
+ "loss": 0.8332,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.06,
241
+ "learning_rate": 4.9533500347861675e-05,
242
+ "loss": 0.9178,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.06,
247
+ "learning_rate": 4.950870646280791e-05,
248
+ "loss": 0.9919,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 4.948327717532705e-05,
254
+ "loss": 0.7098,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 4.9457213144688095e-05,
260
+ "loss": 0.7552,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.07,
265
+ "learning_rate": 4.9430515046616175e-05,
266
+ "loss": 0.7496,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.07,
271
+ "learning_rate": 4.940318357327495e-05,
272
+ "loss": 0.7667,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.07,
277
+ "learning_rate": 4.937521943324873e-05,
278
+ "loss": 0.8685,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.07,
283
+ "learning_rate": 4.934662335152405e-05,
284
+ "loss": 0.6715,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 4.931739606947091e-05,
290
+ "loss": 0.8149,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.08,
295
+ "learning_rate": 4.9287538344823544e-05,
296
+ "loss": 0.7346,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.08,
301
+ "learning_rate": 4.925705095166079e-05,
302
+ "loss": 0.7803,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.08,
307
+ "learning_rate": 4.922593468038599e-05,
308
+ "loss": 0.7451,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.08,
313
+ "learning_rate": 4.919419033770652e-05,
314
+ "loss": 0.8402,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.08,
319
+ "learning_rate": 4.916181874661286e-05,
320
+ "loss": 0.7988,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 4.91288207463573e-05,
326
+ "loss": 0.7444,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.09,
331
+ "learning_rate": 4.9095197192432105e-05,
332
+ "loss": 0.8545,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.09,
337
+ "learning_rate": 4.906094895654744e-05,
338
+ "loss": 0.761,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.09,
343
+ "learning_rate": 4.902607692660865e-05,
344
+ "loss": 0.6741,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.09,
349
+ "learning_rate": 4.8990582006693365e-05,
350
+ "loss": 0.8457,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.09,
355
+ "learning_rate": 4.895446511702793e-05,
356
+ "loss": 0.8096,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 4.891772719396369e-05,
362
+ "loss": 0.7989,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.1,
367
+ "learning_rate": 4.888036918995258e-05,
368
+ "loss": 0.7683,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.1,
373
+ "learning_rate": 4.884239207352252e-05,
374
+ "loss": 0.7912,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.1,
379
+ "learning_rate": 4.880379682925228e-05,
380
+ "loss": 0.7417,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.1,
385
+ "learning_rate": 4.876458445774594e-05,
386
+ "loss": 0.7511,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.1,
391
+ "learning_rate": 4.872475597560699e-05,
392
+ "loss": 0.8021,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.11,
397
+ "learning_rate": 4.8684312415411897e-05,
398
+ "loss": 0.8154,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.11,
403
+ "learning_rate": 4.864325482568344e-05,
404
+ "loss": 0.7109,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.11,
409
+ "learning_rate": 4.860158427086341e-05,
410
+ "loss": 0.7915,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.11,
415
+ "learning_rate": 4.855930183128513e-05,
416
+ "loss": 0.6363,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.11,
421
+ "learning_rate": 4.851640860314536e-05,
422
+ "loss": 0.6987,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.11,
427
+ "learning_rate": 4.8472905698475906e-05,
428
+ "loss": 0.6498,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.11,
433
+ "learning_rate": 4.84287942451148e-05,
434
+ "loss": 0.7768,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.12,
439
+ "learning_rate": 4.8384075386677054e-05,
440
+ "loss": 0.7979,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.12,
445
+ "learning_rate": 4.833875028252499e-05,
446
+ "loss": 0.7611,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.12,
451
+ "learning_rate": 4.8292820107738235e-05,
452
+ "loss": 0.7889,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.12,
457
+ "learning_rate": 4.824628605308319e-05,
458
+ "loss": 0.6706,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.12,
463
+ "learning_rate": 4.819914932498222e-05,
464
+ "loss": 0.7762,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.12,
469
+ "learning_rate": 4.815141114548232e-05,
470
+ "loss": 0.7517,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.13,
475
+ "learning_rate": 4.8103072752223486e-05,
476
+ "loss": 0.7793,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.13,
481
+ "learning_rate": 4.805413539840659e-05,
482
+ "loss": 0.7306,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.13,
487
+ "learning_rate": 4.80046003527609e-05,
488
+ "loss": 0.834,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.13,
493
+ "learning_rate": 4.7954468899511215e-05,
494
+ "loss": 0.8076,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.13,
499
+ "learning_rate": 4.790374233834452e-05,
500
+ "loss": 0.8375,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.13,
505
+ "learning_rate": 4.7852421984376324e-05,
506
+ "loss": 0.7839,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.14,
511
+ "learning_rate": 4.780050916811658e-05,
512
+ "loss": 0.6221,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.14,
517
+ "learning_rate": 4.7748005235435137e-05,
518
+ "loss": 0.7212,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.14,
523
+ "learning_rate": 4.76949115475269e-05,
524
+ "loss": 0.6369,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.14,
529
+ "learning_rate": 4.7641229480876515e-05,
530
+ "loss": 0.7167,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.14,
535
+ "learning_rate": 4.758696042722269e-05,
536
+ "loss": 0.6908,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.14,
541
+ "learning_rate": 4.753210579352211e-05,
542
+ "loss": 0.6681,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.15,
547
+ "learning_rate": 4.747666700191297e-05,
548
+ "loss": 0.6566,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.15,
553
+ "learning_rate": 4.7420645489678076e-05,
554
+ "loss": 0.6869,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.15,
559
+ "learning_rate": 4.7364042709207626e-05,
560
+ "loss": 0.7106,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.15,
565
+ "learning_rate": 4.730686012796153e-05,
566
+ "loss": 0.6782,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.15,
571
+ "learning_rate": 4.724909922843136e-05,
572
+ "loss": 0.7148,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.15,
577
+ "learning_rate": 4.719076150810193e-05,
578
+ "loss": 0.8887,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.16,
583
+ "learning_rate": 4.7131848479412476e-05,
584
+ "loss": 0.7408,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.16,
589
+ "learning_rate": 4.707236166971742e-05,
590
+ "loss": 0.7046,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.16,
595
+ "learning_rate": 4.7012302621246804e-05,
596
+ "loss": 0.7657,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.16,
601
+ "learning_rate": 4.695167289106629e-05,
602
+ "loss": 0.8138,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.16,
607
+ "learning_rate": 4.689047405103678e-05,
608
+ "loss": 0.6964,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.16,
613
+ "eval_loss": 0.796372652053833,
614
+ "eval_runtime": 5.3558,
615
+ "eval_samples_per_second": 1.867,
616
+ "eval_steps_per_second": 0.373,
617
+ "step": 100
618
+ }
619
+ ],
620
+ "logging_steps": 1,
621
+ "max_steps": 618,
622
+ "num_input_tokens_seen": 0,
623
+ "num_train_epochs": 1,
624
+ "save_steps": 100,
625
+ "total_flos": 2.520597053571072e+17,
626
+ "train_batch_size": 4,
627
+ "trial_name": null,
628
+ "trial_params": null
629
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1669fbc766ffe69b2e1c5c6cf99065bb5af64e12a25e45ff208dd48072c391fc
3
+ size 4792
checkpoint-200/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.2.dev0
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "gate",
24
+ "o_proj",
25
+ "w1",
26
+ "w3",
27
+ "k_proj",
28
+ "v_proj",
29
+ "w2"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_rslora": false
33
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8518cf3718b948b405c47e5c1fadee69f0503434377726a108a4c01c2a2a72c
3
+ size 289512208
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aac519c587e6d177d1f4119ef597d8ee84c925cf0f7f4eb5e873eeee41aaa88c
3
+ size 579245842
checkpoint-200/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:049c26b844b79121ddd8379f7f69194e63f6fbf6aa007eeac0c66f17eebb8893
3
+ size 888
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1fec887c0727be4f93e419a47cc1fd96a7641b7e73a20d90a7012bb8ac44b1c
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9512c47c6a35214e939ff6559c9df20c2dc67173a449007689dd9fef0c476eda
3
+ size 1064
checkpoint-200/special_tokens_map.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": "</s>",
22
+ "unk_token": {
23
+ "content": "<unk>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ }
29
+ }
checkpoint-200/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-200/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-200/tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": true,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<unk>",
32
+ "<s>",
33
+ "</s>"
34
+ ],
35
+ "bos_token": "<s>",
36
+ "clean_up_tokenization_spaces": false,
37
+ "eos_token": "</s>",
38
+ "legacy": true,
39
+ "max_length": null,
40
+ "model_max_length": 255,
41
+ "pad_to_multiple_of": null,
42
+ "pad_token": "</s>",
43
+ "pad_token_type_id": 0,
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "spaces_between_special_tokens": false,
47
+ "tokenizer_class": "LlamaTokenizer",
48
+ "unk_token": "<unk>",
49
+ "use_default_system_prompt": true
50
+ }
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.32362459546925565,
5
+ "eval_steps": 100,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5e-05,
14
+ "loss": 1.9981,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4.9999675930251536e-05,
20
+ "loss": 2.0613,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 4.99987037294078e-05,
26
+ "loss": 1.8228,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 4.99970834226737e-05,
32
+ "loss": 1.707,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 4.999481505205661e-05,
38
+ "loss": 1.5271,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 4.999189867636535e-05,
44
+ "loss": 1.4562,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 4.998833437120866e-05,
50
+ "loss": 1.3805,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 4.998412222899321e-05,
56
+ "loss": 1.2998,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 4.997926235892124e-05,
62
+ "loss": 1.4383,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 4.997375488698769e-05,
68
+ "loss": 1.2441,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 4.996759995597697e-05,
74
+ "loss": 1.2275,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 4.996079772545923e-05,
80
+ "loss": 1.2233,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 4.995334837178625e-05,
86
+ "loss": 1.1886,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 4.9945252088086825e-05,
92
+ "loss": 1.1779,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "learning_rate": 4.993650908426182e-05,
98
+ "loss": 1.1122,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 4.992711958697868e-05,
104
+ "loss": 1.0766,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 4.991708383966556e-05,
110
+ "loss": 1.0836,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 4.9906402102505026e-05,
116
+ "loss": 0.9728,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 4.989507465242732e-05,
122
+ "loss": 0.9883,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.03,
127
+ "learning_rate": 4.988310178310315e-05,
128
+ "loss": 1.0307,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "learning_rate": 4.9870483804936084e-05,
134
+ "loss": 0.9613,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 4.9857221045054535e-05,
140
+ "loss": 1.1038,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 4.9843313847303246e-05,
146
+ "loss": 0.9206,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 4.9828762572234374e-05,
152
+ "loss": 0.9893,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 4.9813567597098166e-05,
158
+ "loss": 0.8328,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.04,
163
+ "learning_rate": 4.979772931583317e-05,
164
+ "loss": 0.8712,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.04,
169
+ "learning_rate": 4.978124813905599e-05,
170
+ "loss": 0.8031,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 4.976412449405072e-05,
176
+ "loss": 0.7675,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 4.974635882475778e-05,
182
+ "loss": 0.7851,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 4.972795159176243e-05,
188
+ "loss": 0.7447,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 4.9708903272282884e-05,
194
+ "loss": 0.7719,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.05,
199
+ "learning_rate": 4.9689214360157844e-05,
200
+ "loss": 0.7142,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.05,
205
+ "learning_rate": 4.9668885365833795e-05,
206
+ "loss": 0.8649,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 4.96479168163517e-05,
212
+ "loss": 0.7574,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 4.9626309255333346e-05,
218
+ "loss": 0.9205,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 4.9604063242967315e-05,
224
+ "loss": 0.7987,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.06,
229
+ "learning_rate": 4.958117935599434e-05,
230
+ "loss": 0.7626,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.06,
235
+ "learning_rate": 4.955765818769249e-05,
236
+ "loss": 0.8332,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.06,
241
+ "learning_rate": 4.9533500347861675e-05,
242
+ "loss": 0.9178,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.06,
247
+ "learning_rate": 4.950870646280791e-05,
248
+ "loss": 0.9919,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 4.948327717532705e-05,
254
+ "loss": 0.7098,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 4.9457213144688095e-05,
260
+ "loss": 0.7552,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.07,
265
+ "learning_rate": 4.9430515046616175e-05,
266
+ "loss": 0.7496,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.07,
271
+ "learning_rate": 4.940318357327495e-05,
272
+ "loss": 0.7667,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.07,
277
+ "learning_rate": 4.937521943324873e-05,
278
+ "loss": 0.8685,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.07,
283
+ "learning_rate": 4.934662335152405e-05,
284
+ "loss": 0.6715,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 4.931739606947091e-05,
290
+ "loss": 0.8149,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.08,
295
+ "learning_rate": 4.9287538344823544e-05,
296
+ "loss": 0.7346,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.08,
301
+ "learning_rate": 4.925705095166079e-05,
302
+ "loss": 0.7803,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.08,
307
+ "learning_rate": 4.922593468038599e-05,
308
+ "loss": 0.7451,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.08,
313
+ "learning_rate": 4.919419033770652e-05,
314
+ "loss": 0.8402,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.08,
319
+ "learning_rate": 4.916181874661286e-05,
320
+ "loss": 0.7988,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 4.91288207463573e-05,
326
+ "loss": 0.7444,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.09,
331
+ "learning_rate": 4.9095197192432105e-05,
332
+ "loss": 0.8545,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.09,
337
+ "learning_rate": 4.906094895654744e-05,
338
+ "loss": 0.761,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.09,
343
+ "learning_rate": 4.902607692660865e-05,
344
+ "loss": 0.6741,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.09,
349
+ "learning_rate": 4.8990582006693365e-05,
350
+ "loss": 0.8457,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.09,
355
+ "learning_rate": 4.895446511702793e-05,
356
+ "loss": 0.8096,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 4.891772719396369e-05,
362
+ "loss": 0.7989,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.1,
367
+ "learning_rate": 4.888036918995258e-05,
368
+ "loss": 0.7683,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.1,
373
+ "learning_rate": 4.884239207352252e-05,
374
+ "loss": 0.7912,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.1,
379
+ "learning_rate": 4.880379682925228e-05,
380
+ "loss": 0.7417,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.1,
385
+ "learning_rate": 4.876458445774594e-05,
386
+ "loss": 0.7511,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.1,
391
+ "learning_rate": 4.872475597560699e-05,
392
+ "loss": 0.8021,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.11,
397
+ "learning_rate": 4.8684312415411897e-05,
398
+ "loss": 0.8154,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.11,
403
+ "learning_rate": 4.864325482568344e-05,
404
+ "loss": 0.7109,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.11,
409
+ "learning_rate": 4.860158427086341e-05,
410
+ "loss": 0.7915,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.11,
415
+ "learning_rate": 4.855930183128513e-05,
416
+ "loss": 0.6363,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.11,
421
+ "learning_rate": 4.851640860314536e-05,
422
+ "loss": 0.6987,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.11,
427
+ "learning_rate": 4.8472905698475906e-05,
428
+ "loss": 0.6498,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.11,
433
+ "learning_rate": 4.84287942451148e-05,
434
+ "loss": 0.7768,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.12,
439
+ "learning_rate": 4.8384075386677054e-05,
440
+ "loss": 0.7979,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.12,
445
+ "learning_rate": 4.833875028252499e-05,
446
+ "loss": 0.7611,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.12,
451
+ "learning_rate": 4.8292820107738235e-05,
452
+ "loss": 0.7889,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.12,
457
+ "learning_rate": 4.824628605308319e-05,
458
+ "loss": 0.6706,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.12,
463
+ "learning_rate": 4.819914932498222e-05,
464
+ "loss": 0.7762,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.12,
469
+ "learning_rate": 4.815141114548232e-05,
470
+ "loss": 0.7517,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.13,
475
+ "learning_rate": 4.8103072752223486e-05,
476
+ "loss": 0.7793,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.13,
481
+ "learning_rate": 4.805413539840659e-05,
482
+ "loss": 0.7306,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.13,
487
+ "learning_rate": 4.80046003527609e-05,
488
+ "loss": 0.834,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.13,
493
+ "learning_rate": 4.7954468899511215e-05,
494
+ "loss": 0.8076,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.13,
499
+ "learning_rate": 4.790374233834452e-05,
500
+ "loss": 0.8375,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.13,
505
+ "learning_rate": 4.7852421984376324e-05,
506
+ "loss": 0.7839,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.14,
511
+ "learning_rate": 4.780050916811658e-05,
512
+ "loss": 0.6221,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.14,
517
+ "learning_rate": 4.7748005235435137e-05,
518
+ "loss": 0.7212,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.14,
523
+ "learning_rate": 4.76949115475269e-05,
524
+ "loss": 0.6369,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.14,
529
+ "learning_rate": 4.7641229480876515e-05,
530
+ "loss": 0.7167,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.14,
535
+ "learning_rate": 4.758696042722269e-05,
536
+ "loss": 0.6908,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.14,
541
+ "learning_rate": 4.753210579352211e-05,
542
+ "loss": 0.6681,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.15,
547
+ "learning_rate": 4.747666700191297e-05,
548
+ "loss": 0.6566,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.15,
553
+ "learning_rate": 4.7420645489678076e-05,
554
+ "loss": 0.6869,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.15,
559
+ "learning_rate": 4.7364042709207626e-05,
560
+ "loss": 0.7106,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.15,
565
+ "learning_rate": 4.730686012796153e-05,
566
+ "loss": 0.6782,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.15,
571
+ "learning_rate": 4.724909922843136e-05,
572
+ "loss": 0.7148,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.15,
577
+ "learning_rate": 4.719076150810193e-05,
578
+ "loss": 0.8887,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.16,
583
+ "learning_rate": 4.7131848479412476e-05,
584
+ "loss": 0.7408,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.16,
589
+ "learning_rate": 4.707236166971742e-05,
590
+ "loss": 0.7046,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.16,
595
+ "learning_rate": 4.7012302621246804e-05,
596
+ "loss": 0.7657,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.16,
601
+ "learning_rate": 4.695167289106629e-05,
602
+ "loss": 0.8138,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.16,
607
+ "learning_rate": 4.689047405103678e-05,
608
+ "loss": 0.6964,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.16,
613
+ "eval_loss": 0.796372652053833,
614
+ "eval_runtime": 5.3558,
615
+ "eval_samples_per_second": 1.867,
616
+ "eval_steps_per_second": 0.373,
617
+ "step": 100
618
+ },
619
+ {
620
+ "epoch": 0.16,
621
+ "learning_rate": 4.68287076877737e-05,
622
+ "loss": 0.6541,
623
+ "step": 101
624
+ },
625
+ {
626
+ "epoch": 0.17,
627
+ "learning_rate": 4.6766375402605824e-05,
628
+ "loss": 0.714,
629
+ "step": 102
630
+ },
631
+ {
632
+ "epoch": 0.17,
633
+ "learning_rate": 4.6703478811533794e-05,
634
+ "loss": 0.6823,
635
+ "step": 103
636
+ },
637
+ {
638
+ "epoch": 0.17,
639
+ "learning_rate": 4.6640019545188216e-05,
640
+ "loss": 0.8283,
641
+ "step": 104
642
+ },
643
+ {
644
+ "epoch": 0.17,
645
+ "learning_rate": 4.657599924878736e-05,
646
+ "loss": 0.7126,
647
+ "step": 105
648
+ },
649
+ {
650
+ "epoch": 0.17,
651
+ "learning_rate": 4.651141958209453e-05,
652
+ "loss": 0.6612,
653
+ "step": 106
654
+ },
655
+ {
656
+ "epoch": 0.17,
657
+ "learning_rate": 4.644628221937504e-05,
658
+ "loss": 0.7339,
659
+ "step": 107
660
+ },
661
+ {
662
+ "epoch": 0.17,
663
+ "learning_rate": 4.638058884935279e-05,
664
+ "loss": 0.6852,
665
+ "step": 108
666
+ },
667
+ {
668
+ "epoch": 0.18,
669
+ "learning_rate": 4.6314341175166485e-05,
670
+ "loss": 0.6804,
671
+ "step": 109
672
+ },
673
+ {
674
+ "epoch": 0.18,
675
+ "learning_rate": 4.6247540914325504e-05,
676
+ "loss": 0.7904,
677
+ "step": 110
678
+ },
679
+ {
680
+ "epoch": 0.18,
681
+ "learning_rate": 4.618018979866534e-05,
682
+ "loss": 0.6545,
683
+ "step": 111
684
+ },
685
+ {
686
+ "epoch": 0.18,
687
+ "learning_rate": 4.611228957430272e-05,
688
+ "loss": 0.7545,
689
+ "step": 112
690
+ },
691
+ {
692
+ "epoch": 0.18,
693
+ "learning_rate": 4.6043842001590344e-05,
694
+ "loss": 0.7478,
695
+ "step": 113
696
+ },
697
+ {
698
+ "epoch": 0.18,
699
+ "learning_rate": 4.5974848855071206e-05,
700
+ "loss": 0.8083,
701
+ "step": 114
702
+ },
703
+ {
704
+ "epoch": 0.19,
705
+ "learning_rate": 4.590531192343266e-05,
706
+ "loss": 0.7435,
707
+ "step": 115
708
+ },
709
+ {
710
+ "epoch": 0.19,
711
+ "learning_rate": 4.5835233009459964e-05,
712
+ "loss": 0.7647,
713
+ "step": 116
714
+ },
715
+ {
716
+ "epoch": 0.19,
717
+ "learning_rate": 4.576461392998961e-05,
718
+ "loss": 0.7631,
719
+ "step": 117
720
+ },
721
+ {
722
+ "epoch": 0.19,
723
+ "learning_rate": 4.569345651586218e-05,
724
+ "loss": 0.7674,
725
+ "step": 118
726
+ },
727
+ {
728
+ "epoch": 0.19,
729
+ "learning_rate": 4.5621762611874904e-05,
730
+ "loss": 0.6737,
731
+ "step": 119
732
+ },
733
+ {
734
+ "epoch": 0.19,
735
+ "learning_rate": 4.55495340767338e-05,
736
+ "loss": 0.6901,
737
+ "step": 120
738
+ },
739
+ {
740
+ "epoch": 0.2,
741
+ "learning_rate": 4.547677278300555e-05,
742
+ "loss": 0.709,
743
+ "step": 121
744
+ },
745
+ {
746
+ "epoch": 0.2,
747
+ "learning_rate": 4.540348061706886e-05,
748
+ "loss": 0.5995,
749
+ "step": 122
750
+ },
751
+ {
752
+ "epoch": 0.2,
753
+ "learning_rate": 4.5329659479065655e-05,
754
+ "loss": 0.6832,
755
+ "step": 123
756
+ },
757
+ {
758
+ "epoch": 0.2,
759
+ "learning_rate": 4.525531128285173e-05,
760
+ "loss": 0.7584,
761
+ "step": 124
762
+ },
763
+ {
764
+ "epoch": 0.2,
765
+ "learning_rate": 4.5180437955947195e-05,
766
+ "loss": 0.6998,
767
+ "step": 125
768
+ },
769
+ {
770
+ "epoch": 0.2,
771
+ "learning_rate": 4.510504143948646e-05,
772
+ "loss": 0.6477,
773
+ "step": 126
774
+ },
775
+ {
776
+ "epoch": 0.21,
777
+ "learning_rate": 4.502912368816794e-05,
778
+ "loss": 0.681,
779
+ "step": 127
780
+ },
781
+ {
782
+ "epoch": 0.21,
783
+ "learning_rate": 4.4952686670203357e-05,
784
+ "loss": 0.7638,
785
+ "step": 128
786
+ },
787
+ {
788
+ "epoch": 0.21,
789
+ "learning_rate": 4.487573236726673e-05,
790
+ "loss": 0.7086,
791
+ "step": 129
792
+ },
793
+ {
794
+ "epoch": 0.21,
795
+ "learning_rate": 4.4798262774442986e-05,
796
+ "loss": 0.6166,
797
+ "step": 130
798
+ },
799
+ {
800
+ "epoch": 0.21,
801
+ "learning_rate": 4.472027990017623e-05,
802
+ "loss": 0.5901,
803
+ "step": 131
804
+ },
805
+ {
806
+ "epoch": 0.21,
807
+ "learning_rate": 4.464178576621771e-05,
808
+ "loss": 0.8138,
809
+ "step": 132
810
+ },
811
+ {
812
+ "epoch": 0.22,
813
+ "learning_rate": 4.456278240757338e-05,
814
+ "loss": 0.6773,
815
+ "step": 133
816
+ },
817
+ {
818
+ "epoch": 0.22,
819
+ "learning_rate": 4.4483271872451094e-05,
820
+ "loss": 0.6576,
821
+ "step": 134
822
+ },
823
+ {
824
+ "epoch": 0.22,
825
+ "learning_rate": 4.44032562222076e-05,
826
+ "loss": 0.7106,
827
+ "step": 135
828
+ },
829
+ {
830
+ "epoch": 0.22,
831
+ "learning_rate": 4.432273753129502e-05,
832
+ "loss": 0.6479,
833
+ "step": 136
834
+ },
835
+ {
836
+ "epoch": 0.22,
837
+ "learning_rate": 4.4241717887207124e-05,
838
+ "loss": 0.7102,
839
+ "step": 137
840
+ },
841
+ {
842
+ "epoch": 0.22,
843
+ "learning_rate": 4.416019939042515e-05,
844
+ "loss": 0.7188,
845
+ "step": 138
846
+ },
847
+ {
848
+ "epoch": 0.22,
849
+ "learning_rate": 4.40781841543634e-05,
850
+ "loss": 0.6996,
851
+ "step": 139
852
+ },
853
+ {
854
+ "epoch": 0.23,
855
+ "learning_rate": 4.399567430531444e-05,
856
+ "loss": 0.7523,
857
+ "step": 140
858
+ },
859
+ {
860
+ "epoch": 0.23,
861
+ "learning_rate": 4.391267198239394e-05,
862
+ "loss": 0.6279,
863
+ "step": 141
864
+ },
865
+ {
866
+ "epoch": 0.23,
867
+ "learning_rate": 4.3829179337485254e-05,
868
+ "loss": 0.6718,
869
+ "step": 142
870
+ },
871
+ {
872
+ "epoch": 0.23,
873
+ "learning_rate": 4.374519853518362e-05,
874
+ "loss": 0.668,
875
+ "step": 143
876
+ },
877
+ {
878
+ "epoch": 0.23,
879
+ "learning_rate": 4.366073175274004e-05,
880
+ "loss": 0.8341,
881
+ "step": 144
882
+ },
883
+ {
884
+ "epoch": 0.23,
885
+ "learning_rate": 4.357578118000482e-05,
886
+ "loss": 0.7262,
887
+ "step": 145
888
+ },
889
+ {
890
+ "epoch": 0.24,
891
+ "learning_rate": 4.3490349019370824e-05,
892
+ "loss": 0.7613,
893
+ "step": 146
894
+ },
895
+ {
896
+ "epoch": 0.24,
897
+ "learning_rate": 4.340443748571636e-05,
898
+ "loss": 0.6722,
899
+ "step": 147
900
+ },
901
+ {
902
+ "epoch": 0.24,
903
+ "learning_rate": 4.331804880634775e-05,
904
+ "loss": 0.7229,
905
+ "step": 148
906
+ },
907
+ {
908
+ "epoch": 0.24,
909
+ "learning_rate": 4.3231185220941605e-05,
910
+ "loss": 0.7265,
911
+ "step": 149
912
+ },
913
+ {
914
+ "epoch": 0.24,
915
+ "learning_rate": 4.3143848981486746e-05,
916
+ "loss": 0.7289,
917
+ "step": 150
918
+ },
919
+ {
920
+ "epoch": 0.24,
921
+ "learning_rate": 4.305604235222582e-05,
922
+ "loss": 0.6441,
923
+ "step": 151
924
+ },
925
+ {
926
+ "epoch": 0.25,
927
+ "learning_rate": 4.2967767609596624e-05,
928
+ "loss": 0.772,
929
+ "step": 152
930
+ },
931
+ {
932
+ "epoch": 0.25,
933
+ "learning_rate": 4.287902704217304e-05,
934
+ "loss": 0.705,
935
+ "step": 153
936
+ },
937
+ {
938
+ "epoch": 0.25,
939
+ "learning_rate": 4.2789822950605725e-05,
940
+ "loss": 0.7711,
941
+ "step": 154
942
+ },
943
+ {
944
+ "epoch": 0.25,
945
+ "learning_rate": 4.2700157647562486e-05,
946
+ "loss": 0.7688,
947
+ "step": 155
948
+ },
949
+ {
950
+ "epoch": 0.25,
951
+ "learning_rate": 4.261003345766832e-05,
952
+ "loss": 0.6978,
953
+ "step": 156
954
+ },
955
+ {
956
+ "epoch": 0.25,
957
+ "learning_rate": 4.251945271744509e-05,
958
+ "loss": 0.7418,
959
+ "step": 157
960
+ },
961
+ {
962
+ "epoch": 0.26,
963
+ "learning_rate": 4.242841777525101e-05,
964
+ "loss": 0.6258,
965
+ "step": 158
966
+ },
967
+ {
968
+ "epoch": 0.26,
969
+ "learning_rate": 4.233693099121976e-05,
970
+ "loss": 0.7988,
971
+ "step": 159
972
+ },
973
+ {
974
+ "epoch": 0.26,
975
+ "learning_rate": 4.224499473719926e-05,
976
+ "loss": 0.6947,
977
+ "step": 160
978
+ },
979
+ {
980
+ "epoch": 0.26,
981
+ "learning_rate": 4.21526113966902e-05,
982
+ "loss": 0.6712,
983
+ "step": 161
984
+ },
985
+ {
986
+ "epoch": 0.26,
987
+ "learning_rate": 4.205978336478427e-05,
988
+ "loss": 0.6871,
989
+ "step": 162
990
+ },
991
+ {
992
+ "epoch": 0.26,
993
+ "learning_rate": 4.196651304810202e-05,
994
+ "loss": 0.6682,
995
+ "step": 163
996
+ },
997
+ {
998
+ "epoch": 0.27,
999
+ "learning_rate": 4.187280286473048e-05,
1000
+ "loss": 0.6139,
1001
+ "step": 164
1002
+ },
1003
+ {
1004
+ "epoch": 0.27,
1005
+ "learning_rate": 4.177865524416052e-05,
1006
+ "loss": 0.6259,
1007
+ "step": 165
1008
+ },
1009
+ {
1010
+ "epoch": 0.27,
1011
+ "learning_rate": 4.168407262722377e-05,
1012
+ "loss": 0.6894,
1013
+ "step": 166
1014
+ },
1015
+ {
1016
+ "epoch": 0.27,
1017
+ "learning_rate": 4.1589057466029444e-05,
1018
+ "loss": 0.8107,
1019
+ "step": 167
1020
+ },
1021
+ {
1022
+ "epoch": 0.27,
1023
+ "learning_rate": 4.149361222390068e-05,
1024
+ "loss": 0.728,
1025
+ "step": 168
1026
+ },
1027
+ {
1028
+ "epoch": 0.27,
1029
+ "learning_rate": 4.1397739375310736e-05,
1030
+ "loss": 0.6987,
1031
+ "step": 169
1032
+ },
1033
+ {
1034
+ "epoch": 0.28,
1035
+ "learning_rate": 4.1301441405818794e-05,
1036
+ "loss": 0.7855,
1037
+ "step": 170
1038
+ },
1039
+ {
1040
+ "epoch": 0.28,
1041
+ "learning_rate": 4.120472081200556e-05,
1042
+ "loss": 0.6786,
1043
+ "step": 171
1044
+ },
1045
+ {
1046
+ "epoch": 0.28,
1047
+ "learning_rate": 4.1107580101408524e-05,
1048
+ "loss": 0.805,
1049
+ "step": 172
1050
+ },
1051
+ {
1052
+ "epoch": 0.28,
1053
+ "learning_rate": 4.101002179245693e-05,
1054
+ "loss": 0.7006,
1055
+ "step": 173
1056
+ },
1057
+ {
1058
+ "epoch": 0.28,
1059
+ "learning_rate": 4.09120484144065e-05,
1060
+ "loss": 0.7023,
1061
+ "step": 174
1062
+ },
1063
+ {
1064
+ "epoch": 0.28,
1065
+ "learning_rate": 4.0813662507273885e-05,
1066
+ "loss": 0.7802,
1067
+ "step": 175
1068
+ },
1069
+ {
1070
+ "epoch": 0.28,
1071
+ "learning_rate": 4.0714866621770775e-05,
1072
+ "loss": 0.6794,
1073
+ "step": 176
1074
+ },
1075
+ {
1076
+ "epoch": 0.29,
1077
+ "learning_rate": 4.06156633192378e-05,
1078
+ "loss": 0.6833,
1079
+ "step": 177
1080
+ },
1081
+ {
1082
+ "epoch": 0.29,
1083
+ "learning_rate": 4.051605517157809e-05,
1084
+ "loss": 0.7591,
1085
+ "step": 178
1086
+ },
1087
+ {
1088
+ "epoch": 0.29,
1089
+ "learning_rate": 4.041604476119064e-05,
1090
+ "loss": 0.7059,
1091
+ "step": 179
1092
+ },
1093
+ {
1094
+ "epoch": 0.29,
1095
+ "learning_rate": 4.0315634680903336e-05,
1096
+ "loss": 0.713,
1097
+ "step": 180
1098
+ },
1099
+ {
1100
+ "epoch": 0.29,
1101
+ "learning_rate": 4.021482753390573e-05,
1102
+ "loss": 0.686,
1103
+ "step": 181
1104
+ },
1105
+ {
1106
+ "epoch": 0.29,
1107
+ "learning_rate": 4.011362593368156e-05,
1108
+ "loss": 0.718,
1109
+ "step": 182
1110
+ },
1111
+ {
1112
+ "epoch": 0.3,
1113
+ "learning_rate": 4.001203250394101e-05,
1114
+ "loss": 0.8431,
1115
+ "step": 183
1116
+ },
1117
+ {
1118
+ "epoch": 0.3,
1119
+ "learning_rate": 3.9910049878552646e-05,
1120
+ "loss": 0.7043,
1121
+ "step": 184
1122
+ },
1123
+ {
1124
+ "epoch": 0.3,
1125
+ "learning_rate": 3.9807680701475174e-05,
1126
+ "loss": 0.7591,
1127
+ "step": 185
1128
+ },
1129
+ {
1130
+ "epoch": 0.3,
1131
+ "learning_rate": 3.970492762668887e-05,
1132
+ "loss": 0.7677,
1133
+ "step": 186
1134
+ },
1135
+ {
1136
+ "epoch": 0.3,
1137
+ "learning_rate": 3.9601793318126776e-05,
1138
+ "loss": 0.6897,
1139
+ "step": 187
1140
+ },
1141
+ {
1142
+ "epoch": 0.3,
1143
+ "learning_rate": 3.9498280449605664e-05,
1144
+ "loss": 0.753,
1145
+ "step": 188
1146
+ },
1147
+ {
1148
+ "epoch": 0.31,
1149
+ "learning_rate": 3.939439170475666e-05,
1150
+ "loss": 0.7049,
1151
+ "step": 189
1152
+ },
1153
+ {
1154
+ "epoch": 0.31,
1155
+ "learning_rate": 3.929012977695572e-05,
1156
+ "loss": 0.6654,
1157
+ "step": 190
1158
+ },
1159
+ {
1160
+ "epoch": 0.31,
1161
+ "learning_rate": 3.918549736925378e-05,
1162
+ "loss": 0.6969,
1163
+ "step": 191
1164
+ },
1165
+ {
1166
+ "epoch": 0.31,
1167
+ "learning_rate": 3.9080497194306686e-05,
1168
+ "loss": 0.6655,
1169
+ "step": 192
1170
+ },
1171
+ {
1172
+ "epoch": 0.31,
1173
+ "learning_rate": 3.897513197430486e-05,
1174
+ "loss": 0.7118,
1175
+ "step": 193
1176
+ },
1177
+ {
1178
+ "epoch": 0.31,
1179
+ "learning_rate": 3.8869404440902735e-05,
1180
+ "loss": 0.5986,
1181
+ "step": 194
1182
+ },
1183
+ {
1184
+ "epoch": 0.32,
1185
+ "learning_rate": 3.876331733514792e-05,
1186
+ "loss": 0.7191,
1187
+ "step": 195
1188
+ },
1189
+ {
1190
+ "epoch": 0.32,
1191
+ "learning_rate": 3.865687340741014e-05,
1192
+ "loss": 0.6433,
1193
+ "step": 196
1194
+ },
1195
+ {
1196
+ "epoch": 0.32,
1197
+ "learning_rate": 3.855007541730996e-05,
1198
+ "loss": 0.6386,
1199
+ "step": 197
1200
+ },
1201
+ {
1202
+ "epoch": 0.32,
1203
+ "learning_rate": 3.844292613364719e-05,
1204
+ "loss": 0.8535,
1205
+ "step": 198
1206
+ },
1207
+ {
1208
+ "epoch": 0.32,
1209
+ "learning_rate": 3.833542833432916e-05,
1210
+ "loss": 0.7112,
1211
+ "step": 199
1212
+ },
1213
+ {
1214
+ "epoch": 0.32,
1215
+ "learning_rate": 3.822758480629864e-05,
1216
+ "loss": 0.7226,
1217
+ "step": 200
1218
+ },
1219
+ {
1220
+ "epoch": 0.32,
1221
+ "eval_loss": 0.7749701738357544,
1222
+ "eval_runtime": 5.4698,
1223
+ "eval_samples_per_second": 1.828,
1224
+ "eval_steps_per_second": 0.366,
1225
+ "step": 200
1226
+ }
1227
+ ],
1228
+ "logging_steps": 1,
1229
+ "max_steps": 618,
1230
+ "num_input_tokens_seen": 0,
1231
+ "num_train_epochs": 1,
1232
+ "save_steps": 100,
1233
+ "total_flos": 5.041194107142144e+17,
1234
+ "train_batch_size": 4,
1235
+ "trial_name": null,
1236
+ "trial_params": null
1237
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1669fbc766ffe69b2e1c5c6cf99065bb5af64e12a25e45ff208dd48072c391fc
3
+ size 4792
checkpoint-300/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.2.dev0
checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "gate",
24
+ "o_proj",
25
+ "w1",
26
+ "w3",
27
+ "k_proj",
28
+ "v_proj",
29
+ "w2"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_rslora": false
33
+ }
checkpoint-300/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1caf05d4ee564afe0509443a20432e945ba57be20ad9511377952e9caa09a494
3
+ size 289512208
checkpoint-300/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d5c8d7b4e6f1b9e73745b34c85ed03435e46f307101d64f389069dec62a3024
3
+ size 579246546
checkpoint-300/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:049c26b844b79121ddd8379f7f69194e63f6fbf6aa007eeac0c66f17eebb8893
3
+ size 888
checkpoint-300/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38f8b8daff3129c5b0751c2f6ce50232436b879c0ae85f1e32205419dd899b6d
3
+ size 14244
checkpoint-300/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14808eb35816406de817be13184fc0959b0b7a479676969bd5f06d8716aff1d5
3
+ size 1064
checkpoint-300/special_tokens_map.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": "</s>",
22
+ "unk_token": {
23
+ "content": "<unk>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ }
29
+ }
checkpoint-300/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-300/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-300/tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": true,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [
31
+ "<unk>",
32
+ "<s>",
33
+ "</s>"
34
+ ],
35
+ "bos_token": "<s>",
36
+ "clean_up_tokenization_spaces": false,
37
+ "eos_token": "</s>",
38
+ "legacy": true,
39
+ "max_length": null,
40
+ "model_max_length": 255,
41
+ "pad_to_multiple_of": null,
42
+ "pad_token": "</s>",
43
+ "pad_token_type_id": 0,
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "spaces_between_special_tokens": false,
47
+ "tokenizer_class": "LlamaTokenizer",
48
+ "unk_token": "<unk>",
49
+ "use_default_system_prompt": true
50
+ }
checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,1845 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.4854368932038835,
5
+ "eval_steps": 100,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5e-05,
14
+ "loss": 1.9981,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4.9999675930251536e-05,
20
+ "loss": 2.0613,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 4.99987037294078e-05,
26
+ "loss": 1.8228,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 4.99970834226737e-05,
32
+ "loss": 1.707,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 4.999481505205661e-05,
38
+ "loss": 1.5271,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 4.999189867636535e-05,
44
+ "loss": 1.4562,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 4.998833437120866e-05,
50
+ "loss": 1.3805,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 4.998412222899321e-05,
56
+ "loss": 1.2998,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 4.997926235892124e-05,
62
+ "loss": 1.4383,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 4.997375488698769e-05,
68
+ "loss": 1.2441,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 4.996759995597697e-05,
74
+ "loss": 1.2275,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 4.996079772545923e-05,
80
+ "loss": 1.2233,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 4.995334837178625e-05,
86
+ "loss": 1.1886,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 4.9945252088086825e-05,
92
+ "loss": 1.1779,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "learning_rate": 4.993650908426182e-05,
98
+ "loss": 1.1122,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 4.992711958697868e-05,
104
+ "loss": 1.0766,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 4.991708383966556e-05,
110
+ "loss": 1.0836,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 4.9906402102505026e-05,
116
+ "loss": 0.9728,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 4.989507465242732e-05,
122
+ "loss": 0.9883,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.03,
127
+ "learning_rate": 4.988310178310315e-05,
128
+ "loss": 1.0307,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "learning_rate": 4.9870483804936084e-05,
134
+ "loss": 0.9613,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 4.9857221045054535e-05,
140
+ "loss": 1.1038,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 4.9843313847303246e-05,
146
+ "loss": 0.9206,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 4.9828762572234374e-05,
152
+ "loss": 0.9893,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 4.9813567597098166e-05,
158
+ "loss": 0.8328,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.04,
163
+ "learning_rate": 4.979772931583317e-05,
164
+ "loss": 0.8712,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.04,
169
+ "learning_rate": 4.978124813905599e-05,
170
+ "loss": 0.8031,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 4.976412449405072e-05,
176
+ "loss": 0.7675,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 4.974635882475778e-05,
182
+ "loss": 0.7851,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 4.972795159176243e-05,
188
+ "loss": 0.7447,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 4.9708903272282884e-05,
194
+ "loss": 0.7719,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.05,
199
+ "learning_rate": 4.9689214360157844e-05,
200
+ "loss": 0.7142,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.05,
205
+ "learning_rate": 4.9668885365833795e-05,
206
+ "loss": 0.8649,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 4.96479168163517e-05,
212
+ "loss": 0.7574,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 4.9626309255333346e-05,
218
+ "loss": 0.9205,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 4.9604063242967315e-05,
224
+ "loss": 0.7987,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.06,
229
+ "learning_rate": 4.958117935599434e-05,
230
+ "loss": 0.7626,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.06,
235
+ "learning_rate": 4.955765818769249e-05,
236
+ "loss": 0.8332,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.06,
241
+ "learning_rate": 4.9533500347861675e-05,
242
+ "loss": 0.9178,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.06,
247
+ "learning_rate": 4.950870646280791e-05,
248
+ "loss": 0.9919,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 4.948327717532705e-05,
254
+ "loss": 0.7098,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.07,
259
+ "learning_rate": 4.9457213144688095e-05,
260
+ "loss": 0.7552,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.07,
265
+ "learning_rate": 4.9430515046616175e-05,
266
+ "loss": 0.7496,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.07,
271
+ "learning_rate": 4.940318357327495e-05,
272
+ "loss": 0.7667,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.07,
277
+ "learning_rate": 4.937521943324873e-05,
278
+ "loss": 0.8685,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.07,
283
+ "learning_rate": 4.934662335152405e-05,
284
+ "loss": 0.6715,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 4.931739606947091e-05,
290
+ "loss": 0.8149,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.08,
295
+ "learning_rate": 4.9287538344823544e-05,
296
+ "loss": 0.7346,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.08,
301
+ "learning_rate": 4.925705095166079e-05,
302
+ "loss": 0.7803,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.08,
307
+ "learning_rate": 4.922593468038599e-05,
308
+ "loss": 0.7451,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.08,
313
+ "learning_rate": 4.919419033770652e-05,
314
+ "loss": 0.8402,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.08,
319
+ "learning_rate": 4.916181874661286e-05,
320
+ "loss": 0.7988,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.09,
325
+ "learning_rate": 4.91288207463573e-05,
326
+ "loss": 0.7444,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.09,
331
+ "learning_rate": 4.9095197192432105e-05,
332
+ "loss": 0.8545,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.09,
337
+ "learning_rate": 4.906094895654744e-05,
338
+ "loss": 0.761,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.09,
343
+ "learning_rate": 4.902607692660865e-05,
344
+ "loss": 0.6741,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.09,
349
+ "learning_rate": 4.8990582006693365e-05,
350
+ "loss": 0.8457,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.09,
355
+ "learning_rate": 4.895446511702793e-05,
356
+ "loss": 0.8096,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.1,
361
+ "learning_rate": 4.891772719396369e-05,
362
+ "loss": 0.7989,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.1,
367
+ "learning_rate": 4.888036918995258e-05,
368
+ "loss": 0.7683,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.1,
373
+ "learning_rate": 4.884239207352252e-05,
374
+ "loss": 0.7912,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.1,
379
+ "learning_rate": 4.880379682925228e-05,
380
+ "loss": 0.7417,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.1,
385
+ "learning_rate": 4.876458445774594e-05,
386
+ "loss": 0.7511,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.1,
391
+ "learning_rate": 4.872475597560699e-05,
392
+ "loss": 0.8021,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.11,
397
+ "learning_rate": 4.8684312415411897e-05,
398
+ "loss": 0.8154,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.11,
403
+ "learning_rate": 4.864325482568344e-05,
404
+ "loss": 0.7109,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.11,
409
+ "learning_rate": 4.860158427086341e-05,
410
+ "loss": 0.7915,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.11,
415
+ "learning_rate": 4.855930183128513e-05,
416
+ "loss": 0.6363,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.11,
421
+ "learning_rate": 4.851640860314536e-05,
422
+ "loss": 0.6987,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.11,
427
+ "learning_rate": 4.8472905698475906e-05,
428
+ "loss": 0.6498,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.11,
433
+ "learning_rate": 4.84287942451148e-05,
434
+ "loss": 0.7768,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.12,
439
+ "learning_rate": 4.8384075386677054e-05,
440
+ "loss": 0.7979,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.12,
445
+ "learning_rate": 4.833875028252499e-05,
446
+ "loss": 0.7611,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.12,
451
+ "learning_rate": 4.8292820107738235e-05,
452
+ "loss": 0.7889,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.12,
457
+ "learning_rate": 4.824628605308319e-05,
458
+ "loss": 0.6706,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.12,
463
+ "learning_rate": 4.819914932498222e-05,
464
+ "loss": 0.7762,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.12,
469
+ "learning_rate": 4.815141114548232e-05,
470
+ "loss": 0.7517,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.13,
475
+ "learning_rate": 4.8103072752223486e-05,
476
+ "loss": 0.7793,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.13,
481
+ "learning_rate": 4.805413539840659e-05,
482
+ "loss": 0.7306,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.13,
487
+ "learning_rate": 4.80046003527609e-05,
488
+ "loss": 0.834,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.13,
493
+ "learning_rate": 4.7954468899511215e-05,
494
+ "loss": 0.8076,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.13,
499
+ "learning_rate": 4.790374233834452e-05,
500
+ "loss": 0.8375,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.13,
505
+ "learning_rate": 4.7852421984376324e-05,
506
+ "loss": 0.7839,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.14,
511
+ "learning_rate": 4.780050916811658e-05,
512
+ "loss": 0.6221,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.14,
517
+ "learning_rate": 4.7748005235435137e-05,
518
+ "loss": 0.7212,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.14,
523
+ "learning_rate": 4.76949115475269e-05,
524
+ "loss": 0.6369,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.14,
529
+ "learning_rate": 4.7641229480876515e-05,
530
+ "loss": 0.7167,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.14,
535
+ "learning_rate": 4.758696042722269e-05,
536
+ "loss": 0.6908,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.14,
541
+ "learning_rate": 4.753210579352211e-05,
542
+ "loss": 0.6681,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.15,
547
+ "learning_rate": 4.747666700191297e-05,
548
+ "loss": 0.6566,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.15,
553
+ "learning_rate": 4.7420645489678076e-05,
554
+ "loss": 0.6869,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.15,
559
+ "learning_rate": 4.7364042709207626e-05,
560
+ "loss": 0.7106,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.15,
565
+ "learning_rate": 4.730686012796153e-05,
566
+ "loss": 0.6782,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.15,
571
+ "learning_rate": 4.724909922843136e-05,
572
+ "loss": 0.7148,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.15,
577
+ "learning_rate": 4.719076150810193e-05,
578
+ "loss": 0.8887,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.16,
583
+ "learning_rate": 4.7131848479412476e-05,
584
+ "loss": 0.7408,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.16,
589
+ "learning_rate": 4.707236166971742e-05,
590
+ "loss": 0.7046,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.16,
595
+ "learning_rate": 4.7012302621246804e-05,
596
+ "loss": 0.7657,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.16,
601
+ "learning_rate": 4.695167289106629e-05,
602
+ "loss": 0.8138,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.16,
607
+ "learning_rate": 4.689047405103678e-05,
608
+ "loss": 0.6964,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.16,
613
+ "eval_loss": 0.796372652053833,
614
+ "eval_runtime": 5.3558,
615
+ "eval_samples_per_second": 1.867,
616
+ "eval_steps_per_second": 0.373,
617
+ "step": 100
618
+ },
619
+ {
620
+ "epoch": 0.16,
621
+ "learning_rate": 4.68287076877737e-05,
622
+ "loss": 0.6541,
623
+ "step": 101
624
+ },
625
+ {
626
+ "epoch": 0.17,
627
+ "learning_rate": 4.6766375402605824e-05,
628
+ "loss": 0.714,
629
+ "step": 102
630
+ },
631
+ {
632
+ "epoch": 0.17,
633
+ "learning_rate": 4.6703478811533794e-05,
634
+ "loss": 0.6823,
635
+ "step": 103
636
+ },
637
+ {
638
+ "epoch": 0.17,
639
+ "learning_rate": 4.6640019545188216e-05,
640
+ "loss": 0.8283,
641
+ "step": 104
642
+ },
643
+ {
644
+ "epoch": 0.17,
645
+ "learning_rate": 4.657599924878736e-05,
646
+ "loss": 0.7126,
647
+ "step": 105
648
+ },
649
+ {
650
+ "epoch": 0.17,
651
+ "learning_rate": 4.651141958209453e-05,
652
+ "loss": 0.6612,
653
+ "step": 106
654
+ },
655
+ {
656
+ "epoch": 0.17,
657
+ "learning_rate": 4.644628221937504e-05,
658
+ "loss": 0.7339,
659
+ "step": 107
660
+ },
661
+ {
662
+ "epoch": 0.17,
663
+ "learning_rate": 4.638058884935279e-05,
664
+ "loss": 0.6852,
665
+ "step": 108
666
+ },
667
+ {
668
+ "epoch": 0.18,
669
+ "learning_rate": 4.6314341175166485e-05,
670
+ "loss": 0.6804,
671
+ "step": 109
672
+ },
673
+ {
674
+ "epoch": 0.18,
675
+ "learning_rate": 4.6247540914325504e-05,
676
+ "loss": 0.7904,
677
+ "step": 110
678
+ },
679
+ {
680
+ "epoch": 0.18,
681
+ "learning_rate": 4.618018979866534e-05,
682
+ "loss": 0.6545,
683
+ "step": 111
684
+ },
685
+ {
686
+ "epoch": 0.18,
687
+ "learning_rate": 4.611228957430272e-05,
688
+ "loss": 0.7545,
689
+ "step": 112
690
+ },
691
+ {
692
+ "epoch": 0.18,
693
+ "learning_rate": 4.6043842001590344e-05,
694
+ "loss": 0.7478,
695
+ "step": 113
696
+ },
697
+ {
698
+ "epoch": 0.18,
699
+ "learning_rate": 4.5974848855071206e-05,
700
+ "loss": 0.8083,
701
+ "step": 114
702
+ },
703
+ {
704
+ "epoch": 0.19,
705
+ "learning_rate": 4.590531192343266e-05,
706
+ "loss": 0.7435,
707
+ "step": 115
708
+ },
709
+ {
710
+ "epoch": 0.19,
711
+ "learning_rate": 4.5835233009459964e-05,
712
+ "loss": 0.7647,
713
+ "step": 116
714
+ },
715
+ {
716
+ "epoch": 0.19,
717
+ "learning_rate": 4.576461392998961e-05,
718
+ "loss": 0.7631,
719
+ "step": 117
720
+ },
721
+ {
722
+ "epoch": 0.19,
723
+ "learning_rate": 4.569345651586218e-05,
724
+ "loss": 0.7674,
725
+ "step": 118
726
+ },
727
+ {
728
+ "epoch": 0.19,
729
+ "learning_rate": 4.5621762611874904e-05,
730
+ "loss": 0.6737,
731
+ "step": 119
732
+ },
733
+ {
734
+ "epoch": 0.19,
735
+ "learning_rate": 4.55495340767338e-05,
736
+ "loss": 0.6901,
737
+ "step": 120
738
+ },
739
+ {
740
+ "epoch": 0.2,
741
+ "learning_rate": 4.547677278300555e-05,
742
+ "loss": 0.709,
743
+ "step": 121
744
+ },
745
+ {
746
+ "epoch": 0.2,
747
+ "learning_rate": 4.540348061706886e-05,
748
+ "loss": 0.5995,
749
+ "step": 122
750
+ },
751
+ {
752
+ "epoch": 0.2,
753
+ "learning_rate": 4.5329659479065655e-05,
754
+ "loss": 0.6832,
755
+ "step": 123
756
+ },
757
+ {
758
+ "epoch": 0.2,
759
+ "learning_rate": 4.525531128285173e-05,
760
+ "loss": 0.7584,
761
+ "step": 124
762
+ },
763
+ {
764
+ "epoch": 0.2,
765
+ "learning_rate": 4.5180437955947195e-05,
766
+ "loss": 0.6998,
767
+ "step": 125
768
+ },
769
+ {
770
+ "epoch": 0.2,
771
+ "learning_rate": 4.510504143948646e-05,
772
+ "loss": 0.6477,
773
+ "step": 126
774
+ },
775
+ {
776
+ "epoch": 0.21,
777
+ "learning_rate": 4.502912368816794e-05,
778
+ "loss": 0.681,
779
+ "step": 127
780
+ },
781
+ {
782
+ "epoch": 0.21,
783
+ "learning_rate": 4.4952686670203357e-05,
784
+ "loss": 0.7638,
785
+ "step": 128
786
+ },
787
+ {
788
+ "epoch": 0.21,
789
+ "learning_rate": 4.487573236726673e-05,
790
+ "loss": 0.7086,
791
+ "step": 129
792
+ },
793
+ {
794
+ "epoch": 0.21,
795
+ "learning_rate": 4.4798262774442986e-05,
796
+ "loss": 0.6166,
797
+ "step": 130
798
+ },
799
+ {
800
+ "epoch": 0.21,
801
+ "learning_rate": 4.472027990017623e-05,
802
+ "loss": 0.5901,
803
+ "step": 131
804
+ },
805
+ {
806
+ "epoch": 0.21,
807
+ "learning_rate": 4.464178576621771e-05,
808
+ "loss": 0.8138,
809
+ "step": 132
810
+ },
811
+ {
812
+ "epoch": 0.22,
813
+ "learning_rate": 4.456278240757338e-05,
814
+ "loss": 0.6773,
815
+ "step": 133
816
+ },
817
+ {
818
+ "epoch": 0.22,
819
+ "learning_rate": 4.4483271872451094e-05,
820
+ "loss": 0.6576,
821
+ "step": 134
822
+ },
823
+ {
824
+ "epoch": 0.22,
825
+ "learning_rate": 4.44032562222076e-05,
826
+ "loss": 0.7106,
827
+ "step": 135
828
+ },
829
+ {
830
+ "epoch": 0.22,
831
+ "learning_rate": 4.432273753129502e-05,
832
+ "loss": 0.6479,
833
+ "step": 136
834
+ },
835
+ {
836
+ "epoch": 0.22,
837
+ "learning_rate": 4.4241717887207124e-05,
838
+ "loss": 0.7102,
839
+ "step": 137
840
+ },
841
+ {
842
+ "epoch": 0.22,
843
+ "learning_rate": 4.416019939042515e-05,
844
+ "loss": 0.7188,
845
+ "step": 138
846
+ },
847
+ {
848
+ "epoch": 0.22,
849
+ "learning_rate": 4.40781841543634e-05,
850
+ "loss": 0.6996,
851
+ "step": 139
852
+ },
853
+ {
854
+ "epoch": 0.23,
855
+ "learning_rate": 4.399567430531444e-05,
856
+ "loss": 0.7523,
857
+ "step": 140
858
+ },
859
+ {
860
+ "epoch": 0.23,
861
+ "learning_rate": 4.391267198239394e-05,
862
+ "loss": 0.6279,
863
+ "step": 141
864
+ },
865
+ {
866
+ "epoch": 0.23,
867
+ "learning_rate": 4.3829179337485254e-05,
868
+ "loss": 0.6718,
869
+ "step": 142
870
+ },
871
+ {
872
+ "epoch": 0.23,
873
+ "learning_rate": 4.374519853518362e-05,
874
+ "loss": 0.668,
875
+ "step": 143
876
+ },
877
+ {
878
+ "epoch": 0.23,
879
+ "learning_rate": 4.366073175274004e-05,
880
+ "loss": 0.8341,
881
+ "step": 144
882
+ },
883
+ {
884
+ "epoch": 0.23,
885
+ "learning_rate": 4.357578118000482e-05,
886
+ "loss": 0.7262,
887
+ "step": 145
888
+ },
889
+ {
890
+ "epoch": 0.24,
891
+ "learning_rate": 4.3490349019370824e-05,
892
+ "loss": 0.7613,
893
+ "step": 146
894
+ },
895
+ {
896
+ "epoch": 0.24,
897
+ "learning_rate": 4.340443748571636e-05,
898
+ "loss": 0.6722,
899
+ "step": 147
900
+ },
901
+ {
902
+ "epoch": 0.24,
903
+ "learning_rate": 4.331804880634775e-05,
904
+ "loss": 0.7229,
905
+ "step": 148
906
+ },
907
+ {
908
+ "epoch": 0.24,
909
+ "learning_rate": 4.3231185220941605e-05,
910
+ "loss": 0.7265,
911
+ "step": 149
912
+ },
913
+ {
914
+ "epoch": 0.24,
915
+ "learning_rate": 4.3143848981486746e-05,
916
+ "loss": 0.7289,
917
+ "step": 150
918
+ },
919
+ {
920
+ "epoch": 0.24,
921
+ "learning_rate": 4.305604235222582e-05,
922
+ "loss": 0.6441,
923
+ "step": 151
924
+ },
925
+ {
926
+ "epoch": 0.25,
927
+ "learning_rate": 4.2967767609596624e-05,
928
+ "loss": 0.772,
929
+ "step": 152
930
+ },
931
+ {
932
+ "epoch": 0.25,
933
+ "learning_rate": 4.287902704217304e-05,
934
+ "loss": 0.705,
935
+ "step": 153
936
+ },
937
+ {
938
+ "epoch": 0.25,
939
+ "learning_rate": 4.2789822950605725e-05,
940
+ "loss": 0.7711,
941
+ "step": 154
942
+ },
943
+ {
944
+ "epoch": 0.25,
945
+ "learning_rate": 4.2700157647562486e-05,
946
+ "loss": 0.7688,
947
+ "step": 155
948
+ },
949
+ {
950
+ "epoch": 0.25,
951
+ "learning_rate": 4.261003345766832e-05,
952
+ "loss": 0.6978,
953
+ "step": 156
954
+ },
955
+ {
956
+ "epoch": 0.25,
957
+ "learning_rate": 4.251945271744509e-05,
958
+ "loss": 0.7418,
959
+ "step": 157
960
+ },
961
+ {
962
+ "epoch": 0.26,
963
+ "learning_rate": 4.242841777525101e-05,
964
+ "loss": 0.6258,
965
+ "step": 158
966
+ },
967
+ {
968
+ "epoch": 0.26,
969
+ "learning_rate": 4.233693099121976e-05,
970
+ "loss": 0.7988,
971
+ "step": 159
972
+ },
973
+ {
974
+ "epoch": 0.26,
975
+ "learning_rate": 4.224499473719926e-05,
976
+ "loss": 0.6947,
977
+ "step": 160
978
+ },
979
+ {
980
+ "epoch": 0.26,
981
+ "learning_rate": 4.21526113966902e-05,
982
+ "loss": 0.6712,
983
+ "step": 161
984
+ },
985
+ {
986
+ "epoch": 0.26,
987
+ "learning_rate": 4.205978336478427e-05,
988
+ "loss": 0.6871,
989
+ "step": 162
990
+ },
991
+ {
992
+ "epoch": 0.26,
993
+ "learning_rate": 4.196651304810202e-05,
994
+ "loss": 0.6682,
995
+ "step": 163
996
+ },
997
+ {
998
+ "epoch": 0.27,
999
+ "learning_rate": 4.187280286473048e-05,
1000
+ "loss": 0.6139,
1001
+ "step": 164
1002
+ },
1003
+ {
1004
+ "epoch": 0.27,
1005
+ "learning_rate": 4.177865524416052e-05,
1006
+ "loss": 0.6259,
1007
+ "step": 165
1008
+ },
1009
+ {
1010
+ "epoch": 0.27,
1011
+ "learning_rate": 4.168407262722377e-05,
1012
+ "loss": 0.6894,
1013
+ "step": 166
1014
+ },
1015
+ {
1016
+ "epoch": 0.27,
1017
+ "learning_rate": 4.1589057466029444e-05,
1018
+ "loss": 0.8107,
1019
+ "step": 167
1020
+ },
1021
+ {
1022
+ "epoch": 0.27,
1023
+ "learning_rate": 4.149361222390068e-05,
1024
+ "loss": 0.728,
1025
+ "step": 168
1026
+ },
1027
+ {
1028
+ "epoch": 0.27,
1029
+ "learning_rate": 4.1397739375310736e-05,
1030
+ "loss": 0.6987,
1031
+ "step": 169
1032
+ },
1033
+ {
1034
+ "epoch": 0.28,
1035
+ "learning_rate": 4.1301441405818794e-05,
1036
+ "loss": 0.7855,
1037
+ "step": 170
1038
+ },
1039
+ {
1040
+ "epoch": 0.28,
1041
+ "learning_rate": 4.120472081200556e-05,
1042
+ "loss": 0.6786,
1043
+ "step": 171
1044
+ },
1045
+ {
1046
+ "epoch": 0.28,
1047
+ "learning_rate": 4.1107580101408524e-05,
1048
+ "loss": 0.805,
1049
+ "step": 172
1050
+ },
1051
+ {
1052
+ "epoch": 0.28,
1053
+ "learning_rate": 4.101002179245693e-05,
1054
+ "loss": 0.7006,
1055
+ "step": 173
1056
+ },
1057
+ {
1058
+ "epoch": 0.28,
1059
+ "learning_rate": 4.09120484144065e-05,
1060
+ "loss": 0.7023,
1061
+ "step": 174
1062
+ },
1063
+ {
1064
+ "epoch": 0.28,
1065
+ "learning_rate": 4.0813662507273885e-05,
1066
+ "loss": 0.7802,
1067
+ "step": 175
1068
+ },
1069
+ {
1070
+ "epoch": 0.28,
1071
+ "learning_rate": 4.0714866621770775e-05,
1072
+ "loss": 0.6794,
1073
+ "step": 176
1074
+ },
1075
+ {
1076
+ "epoch": 0.29,
1077
+ "learning_rate": 4.06156633192378e-05,
1078
+ "loss": 0.6833,
1079
+ "step": 177
1080
+ },
1081
+ {
1082
+ "epoch": 0.29,
1083
+ "learning_rate": 4.051605517157809e-05,
1084
+ "loss": 0.7591,
1085
+ "step": 178
1086
+ },
1087
+ {
1088
+ "epoch": 0.29,
1089
+ "learning_rate": 4.041604476119064e-05,
1090
+ "loss": 0.7059,
1091
+ "step": 179
1092
+ },
1093
+ {
1094
+ "epoch": 0.29,
1095
+ "learning_rate": 4.0315634680903336e-05,
1096
+ "loss": 0.713,
1097
+ "step": 180
1098
+ },
1099
+ {
1100
+ "epoch": 0.29,
1101
+ "learning_rate": 4.021482753390573e-05,
1102
+ "loss": 0.686,
1103
+ "step": 181
1104
+ },
1105
+ {
1106
+ "epoch": 0.29,
1107
+ "learning_rate": 4.011362593368156e-05,
1108
+ "loss": 0.718,
1109
+ "step": 182
1110
+ },
1111
+ {
1112
+ "epoch": 0.3,
1113
+ "learning_rate": 4.001203250394101e-05,
1114
+ "loss": 0.8431,
1115
+ "step": 183
1116
+ },
1117
+ {
1118
+ "epoch": 0.3,
1119
+ "learning_rate": 3.9910049878552646e-05,
1120
+ "loss": 0.7043,
1121
+ "step": 184
1122
+ },
1123
+ {
1124
+ "epoch": 0.3,
1125
+ "learning_rate": 3.9807680701475174e-05,
1126
+ "loss": 0.7591,
1127
+ "step": 185
1128
+ },
1129
+ {
1130
+ "epoch": 0.3,
1131
+ "learning_rate": 3.970492762668887e-05,
1132
+ "loss": 0.7677,
1133
+ "step": 186
1134
+ },
1135
+ {
1136
+ "epoch": 0.3,
1137
+ "learning_rate": 3.9601793318126776e-05,
1138
+ "loss": 0.6897,
1139
+ "step": 187
1140
+ },
1141
+ {
1142
+ "epoch": 0.3,
1143
+ "learning_rate": 3.9498280449605664e-05,
1144
+ "loss": 0.753,
1145
+ "step": 188
1146
+ },
1147
+ {
1148
+ "epoch": 0.31,
1149
+ "learning_rate": 3.939439170475666e-05,
1150
+ "loss": 0.7049,
1151
+ "step": 189
1152
+ },
1153
+ {
1154
+ "epoch": 0.31,
1155
+ "learning_rate": 3.929012977695572e-05,
1156
+ "loss": 0.6654,
1157
+ "step": 190
1158
+ },
1159
+ {
1160
+ "epoch": 0.31,
1161
+ "learning_rate": 3.918549736925378e-05,
1162
+ "loss": 0.6969,
1163
+ "step": 191
1164
+ },
1165
+ {
1166
+ "epoch": 0.31,
1167
+ "learning_rate": 3.9080497194306686e-05,
1168
+ "loss": 0.6655,
1169
+ "step": 192
1170
+ },
1171
+ {
1172
+ "epoch": 0.31,
1173
+ "learning_rate": 3.897513197430486e-05,
1174
+ "loss": 0.7118,
1175
+ "step": 193
1176
+ },
1177
+ {
1178
+ "epoch": 0.31,
1179
+ "learning_rate": 3.8869404440902735e-05,
1180
+ "loss": 0.5986,
1181
+ "step": 194
1182
+ },
1183
+ {
1184
+ "epoch": 0.32,
1185
+ "learning_rate": 3.876331733514792e-05,
1186
+ "loss": 0.7191,
1187
+ "step": 195
1188
+ },
1189
+ {
1190
+ "epoch": 0.32,
1191
+ "learning_rate": 3.865687340741014e-05,
1192
+ "loss": 0.6433,
1193
+ "step": 196
1194
+ },
1195
+ {
1196
+ "epoch": 0.32,
1197
+ "learning_rate": 3.855007541730996e-05,
1198
+ "loss": 0.6386,
1199
+ "step": 197
1200
+ },
1201
+ {
1202
+ "epoch": 0.32,
1203
+ "learning_rate": 3.844292613364719e-05,
1204
+ "loss": 0.8535,
1205
+ "step": 198
1206
+ },
1207
+ {
1208
+ "epoch": 0.32,
1209
+ "learning_rate": 3.833542833432916e-05,
1210
+ "loss": 0.7112,
1211
+ "step": 199
1212
+ },
1213
+ {
1214
+ "epoch": 0.32,
1215
+ "learning_rate": 3.822758480629864e-05,
1216
+ "loss": 0.7226,
1217
+ "step": 200
1218
+ },
1219
+ {
1220
+ "epoch": 0.32,
1221
+ "eval_loss": 0.7749701738357544,
1222
+ "eval_runtime": 5.4698,
1223
+ "eval_samples_per_second": 1.828,
1224
+ "eval_steps_per_second": 0.366,
1225
+ "step": 200
1226
+ },
1227
+ {
1228
+ "epoch": 0.33,
1229
+ "learning_rate": 3.811939834546163e-05,
1230
+ "loss": 0.6725,
1231
+ "step": 201
1232
+ },
1233
+ {
1234
+ "epoch": 0.33,
1235
+ "learning_rate": 3.801087175661488e-05,
1236
+ "loss": 0.711,
1237
+ "step": 202
1238
+ },
1239
+ {
1240
+ "epoch": 0.33,
1241
+ "learning_rate": 3.790200785337311e-05,
1242
+ "loss": 0.6973,
1243
+ "step": 203
1244
+ },
1245
+ {
1246
+ "epoch": 0.33,
1247
+ "learning_rate": 3.7792809458096146e-05,
1248
+ "loss": 0.7107,
1249
+ "step": 204
1250
+ },
1251
+ {
1252
+ "epoch": 0.33,
1253
+ "learning_rate": 3.768327940181572e-05,
1254
+ "loss": 0.6809,
1255
+ "step": 205
1256
+ },
1257
+ {
1258
+ "epoch": 0.33,
1259
+ "learning_rate": 3.757342052416205e-05,
1260
+ "loss": 0.6272,
1261
+ "step": 206
1262
+ },
1263
+ {
1264
+ "epoch": 0.33,
1265
+ "learning_rate": 3.746323567329024e-05,
1266
+ "loss": 0.7267,
1267
+ "step": 207
1268
+ },
1269
+ {
1270
+ "epoch": 0.34,
1271
+ "learning_rate": 3.7352727705806446e-05,
1272
+ "loss": 0.764,
1273
+ "step": 208
1274
+ },
1275
+ {
1276
+ "epoch": 0.34,
1277
+ "learning_rate": 3.724189948669381e-05,
1278
+ "loss": 0.7307,
1279
+ "step": 209
1280
+ },
1281
+ {
1282
+ "epoch": 0.34,
1283
+ "learning_rate": 3.7130753889238165e-05,
1284
+ "loss": 0.8486,
1285
+ "step": 210
1286
+ },
1287
+ {
1288
+ "epoch": 0.34,
1289
+ "learning_rate": 3.7019293794953595e-05,
1290
+ "loss": 0.7304,
1291
+ "step": 211
1292
+ },
1293
+ {
1294
+ "epoch": 0.34,
1295
+ "learning_rate": 3.690752209350767e-05,
1296
+ "loss": 0.8079,
1297
+ "step": 212
1298
+ },
1299
+ {
1300
+ "epoch": 0.34,
1301
+ "learning_rate": 3.679544168264656e-05,
1302
+ "loss": 0.6661,
1303
+ "step": 213
1304
+ },
1305
+ {
1306
+ "epoch": 0.35,
1307
+ "learning_rate": 3.668305546811991e-05,
1308
+ "loss": 0.7078,
1309
+ "step": 214
1310
+ },
1311
+ {
1312
+ "epoch": 0.35,
1313
+ "learning_rate": 3.65703663636055e-05,
1314
+ "loss": 0.6363,
1315
+ "step": 215
1316
+ },
1317
+ {
1318
+ "epoch": 0.35,
1319
+ "learning_rate": 3.645737729063372e-05,
1320
+ "loss": 0.6479,
1321
+ "step": 216
1322
+ },
1323
+ {
1324
+ "epoch": 0.35,
1325
+ "learning_rate": 3.63440911785118e-05,
1326
+ "loss": 0.8032,
1327
+ "step": 217
1328
+ },
1329
+ {
1330
+ "epoch": 0.35,
1331
+ "learning_rate": 3.6230510964247886e-05,
1332
+ "loss": 0.7619,
1333
+ "step": 218
1334
+ },
1335
+ {
1336
+ "epoch": 0.35,
1337
+ "learning_rate": 3.61166395924749e-05,
1338
+ "loss": 0.6744,
1339
+ "step": 219
1340
+ },
1341
+ {
1342
+ "epoch": 0.36,
1343
+ "learning_rate": 3.600248001537418e-05,
1344
+ "loss": 0.5971,
1345
+ "step": 220
1346
+ },
1347
+ {
1348
+ "epoch": 0.36,
1349
+ "learning_rate": 3.588803519259898e-05,
1350
+ "loss": 0.7197,
1351
+ "step": 221
1352
+ },
1353
+ {
1354
+ "epoch": 0.36,
1355
+ "learning_rate": 3.577330809119768e-05,
1356
+ "loss": 0.7581,
1357
+ "step": 222
1358
+ },
1359
+ {
1360
+ "epoch": 0.36,
1361
+ "learning_rate": 3.565830168553691e-05,
1362
+ "loss": 0.6288,
1363
+ "step": 223
1364
+ },
1365
+ {
1366
+ "epoch": 0.36,
1367
+ "learning_rate": 3.554301895722442e-05,
1368
+ "loss": 0.8863,
1369
+ "step": 224
1370
+ },
1371
+ {
1372
+ "epoch": 0.36,
1373
+ "learning_rate": 3.542746289503181e-05,
1374
+ "loss": 0.6523,
1375
+ "step": 225
1376
+ },
1377
+ {
1378
+ "epoch": 0.37,
1379
+ "learning_rate": 3.5311636494816984e-05,
1380
+ "loss": 0.6503,
1381
+ "step": 226
1382
+ },
1383
+ {
1384
+ "epoch": 0.37,
1385
+ "learning_rate": 3.519554275944655e-05,
1386
+ "loss": 0.7903,
1387
+ "step": 227
1388
+ },
1389
+ {
1390
+ "epoch": 0.37,
1391
+ "learning_rate": 3.50791846987179e-05,
1392
+ "loss": 0.7974,
1393
+ "step": 228
1394
+ },
1395
+ {
1396
+ "epoch": 0.37,
1397
+ "learning_rate": 3.496256532928125e-05,
1398
+ "loss": 0.712,
1399
+ "step": 229
1400
+ },
1401
+ {
1402
+ "epoch": 0.37,
1403
+ "learning_rate": 3.484568767456135e-05,
1404
+ "loss": 0.6632,
1405
+ "step": 230
1406
+ },
1407
+ {
1408
+ "epoch": 0.37,
1409
+ "learning_rate": 3.47285547646792e-05,
1410
+ "loss": 0.7328,
1411
+ "step": 231
1412
+ },
1413
+ {
1414
+ "epoch": 0.38,
1415
+ "learning_rate": 3.46111696363734e-05,
1416
+ "loss": 0.6455,
1417
+ "step": 232
1418
+ },
1419
+ {
1420
+ "epoch": 0.38,
1421
+ "learning_rate": 3.4493535332921475e-05,
1422
+ "loss": 0.6295,
1423
+ "step": 233
1424
+ },
1425
+ {
1426
+ "epoch": 0.38,
1427
+ "learning_rate": 3.4375654904060956e-05,
1428
+ "loss": 0.6613,
1429
+ "step": 234
1430
+ },
1431
+ {
1432
+ "epoch": 0.38,
1433
+ "learning_rate": 3.425753140591031e-05,
1434
+ "loss": 0.6991,
1435
+ "step": 235
1436
+ },
1437
+ {
1438
+ "epoch": 0.38,
1439
+ "learning_rate": 3.413916790088973e-05,
1440
+ "loss": 0.6047,
1441
+ "step": 236
1442
+ },
1443
+ {
1444
+ "epoch": 0.38,
1445
+ "learning_rate": 3.402056745764172e-05,
1446
+ "loss": 0.7401,
1447
+ "step": 237
1448
+ },
1449
+ {
1450
+ "epoch": 0.39,
1451
+ "learning_rate": 3.3901733150951535e-05,
1452
+ "loss": 0.6909,
1453
+ "step": 238
1454
+ },
1455
+ {
1456
+ "epoch": 0.39,
1457
+ "learning_rate": 3.37826680616675e-05,
1458
+ "loss": 0.6293,
1459
+ "step": 239
1460
+ },
1461
+ {
1462
+ "epoch": 0.39,
1463
+ "learning_rate": 3.366337527662109e-05,
1464
+ "loss": 0.7261,
1465
+ "step": 240
1466
+ },
1467
+ {
1468
+ "epoch": 0.39,
1469
+ "learning_rate": 3.354385788854694e-05,
1470
+ "loss": 0.8233,
1471
+ "step": 241
1472
+ },
1473
+ {
1474
+ "epoch": 0.39,
1475
+ "learning_rate": 3.3424118996002624e-05,
1476
+ "loss": 0.7349,
1477
+ "step": 242
1478
+ },
1479
+ {
1480
+ "epoch": 0.39,
1481
+ "learning_rate": 3.3304161703288385e-05,
1482
+ "loss": 0.6952,
1483
+ "step": 243
1484
+ },
1485
+ {
1486
+ "epoch": 0.39,
1487
+ "learning_rate": 3.318398912036658e-05,
1488
+ "loss": 0.6676,
1489
+ "step": 244
1490
+ },
1491
+ {
1492
+ "epoch": 0.4,
1493
+ "learning_rate": 3.3063604362781125e-05,
1494
+ "loss": 0.6929,
1495
+ "step": 245
1496
+ },
1497
+ {
1498
+ "epoch": 0.4,
1499
+ "learning_rate": 3.2943010551576654e-05,
1500
+ "loss": 0.7219,
1501
+ "step": 246
1502
+ },
1503
+ {
1504
+ "epoch": 0.4,
1505
+ "learning_rate": 3.282221081321766e-05,
1506
+ "loss": 0.7747,
1507
+ "step": 247
1508
+ },
1509
+ {
1510
+ "epoch": 0.4,
1511
+ "learning_rate": 3.27012082795074e-05,
1512
+ "loss": 0.6931,
1513
+ "step": 248
1514
+ },
1515
+ {
1516
+ "epoch": 0.4,
1517
+ "learning_rate": 3.258000608750674e-05,
1518
+ "loss": 0.6869,
1519
+ "step": 249
1520
+ },
1521
+ {
1522
+ "epoch": 0.4,
1523
+ "learning_rate": 3.245860737945278e-05,
1524
+ "loss": 0.6864,
1525
+ "step": 250
1526
+ },
1527
+ {
1528
+ "epoch": 0.41,
1529
+ "learning_rate": 3.233701530267743e-05,
1530
+ "loss": 0.7052,
1531
+ "step": 251
1532
+ },
1533
+ {
1534
+ "epoch": 0.41,
1535
+ "learning_rate": 3.2215233009525786e-05,
1536
+ "loss": 0.7917,
1537
+ "step": 252
1538
+ },
1539
+ {
1540
+ "epoch": 0.41,
1541
+ "learning_rate": 3.209326365727441e-05,
1542
+ "loss": 0.7137,
1543
+ "step": 253
1544
+ },
1545
+ {
1546
+ "epoch": 0.41,
1547
+ "learning_rate": 3.19711104080495e-05,
1548
+ "loss": 0.7149,
1549
+ "step": 254
1550
+ },
1551
+ {
1552
+ "epoch": 0.41,
1553
+ "learning_rate": 3.184877642874486e-05,
1554
+ "loss": 0.694,
1555
+ "step": 255
1556
+ },
1557
+ {
1558
+ "epoch": 0.41,
1559
+ "learning_rate": 3.172626489093986e-05,
1560
+ "loss": 0.6155,
1561
+ "step": 256
1562
+ },
1563
+ {
1564
+ "epoch": 0.42,
1565
+ "learning_rate": 3.1603578970817146e-05,
1566
+ "loss": 0.743,
1567
+ "step": 257
1568
+ },
1569
+ {
1570
+ "epoch": 0.42,
1571
+ "learning_rate": 3.1480721849080344e-05,
1572
+ "loss": 0.6893,
1573
+ "step": 258
1574
+ },
1575
+ {
1576
+ "epoch": 0.42,
1577
+ "learning_rate": 3.1357696710871576e-05,
1578
+ "loss": 0.6215,
1579
+ "step": 259
1580
+ },
1581
+ {
1582
+ "epoch": 0.42,
1583
+ "learning_rate": 3.123450674568889e-05,
1584
+ "loss": 0.6225,
1585
+ "step": 260
1586
+ },
1587
+ {
1588
+ "epoch": 0.42,
1589
+ "learning_rate": 3.1111155147303574e-05,
1590
+ "loss": 0.795,
1591
+ "step": 261
1592
+ },
1593
+ {
1594
+ "epoch": 0.42,
1595
+ "learning_rate": 3.0987645113677335e-05,
1596
+ "loss": 0.84,
1597
+ "step": 262
1598
+ },
1599
+ {
1600
+ "epoch": 0.43,
1601
+ "learning_rate": 3.086397984687943e-05,
1602
+ "loss": 0.6852,
1603
+ "step": 263
1604
+ },
1605
+ {
1606
+ "epoch": 0.43,
1607
+ "learning_rate": 3.074016255300359e-05,
1608
+ "loss": 0.7301,
1609
+ "step": 264
1610
+ },
1611
+ {
1612
+ "epoch": 0.43,
1613
+ "learning_rate": 3.061619644208498e-05,
1614
+ "loss": 0.7638,
1615
+ "step": 265
1616
+ },
1617
+ {
1618
+ "epoch": 0.43,
1619
+ "learning_rate": 3.0492084728016902e-05,
1620
+ "loss": 0.7403,
1621
+ "step": 266
1622
+ },
1623
+ {
1624
+ "epoch": 0.43,
1625
+ "learning_rate": 3.036783062846751e-05,
1626
+ "loss": 0.8257,
1627
+ "step": 267
1628
+ },
1629
+ {
1630
+ "epoch": 0.43,
1631
+ "learning_rate": 3.0243437364796386e-05,
1632
+ "loss": 0.6582,
1633
+ "step": 268
1634
+ },
1635
+ {
1636
+ "epoch": 0.44,
1637
+ "learning_rate": 3.0118908161971025e-05,
1638
+ "loss": 0.6031,
1639
+ "step": 269
1640
+ },
1641
+ {
1642
+ "epoch": 0.44,
1643
+ "learning_rate": 2.9994246248483228e-05,
1644
+ "loss": 0.6981,
1645
+ "step": 270
1646
+ },
1647
+ {
1648
+ "epoch": 0.44,
1649
+ "learning_rate": 2.9869454856265376e-05,
1650
+ "loss": 0.6632,
1651
+ "step": 271
1652
+ },
1653
+ {
1654
+ "epoch": 0.44,
1655
+ "learning_rate": 2.9744537220606693e-05,
1656
+ "loss": 0.7312,
1657
+ "step": 272
1658
+ },
1659
+ {
1660
+ "epoch": 0.44,
1661
+ "learning_rate": 2.9619496580069317e-05,
1662
+ "loss": 0.6421,
1663
+ "step": 273
1664
+ },
1665
+ {
1666
+ "epoch": 0.44,
1667
+ "learning_rate": 2.9494336176404357e-05,
1668
+ "loss": 0.6031,
1669
+ "step": 274
1670
+ },
1671
+ {
1672
+ "epoch": 0.44,
1673
+ "learning_rate": 2.9369059254467858e-05,
1674
+ "loss": 0.77,
1675
+ "step": 275
1676
+ },
1677
+ {
1678
+ "epoch": 0.45,
1679
+ "learning_rate": 2.9243669062136664e-05,
1680
+ "loss": 0.7053,
1681
+ "step": 276
1682
+ },
1683
+ {
1684
+ "epoch": 0.45,
1685
+ "learning_rate": 2.9118168850224226e-05,
1686
+ "loss": 0.7678,
1687
+ "step": 277
1688
+ },
1689
+ {
1690
+ "epoch": 0.45,
1691
+ "learning_rate": 2.8992561872396313e-05,
1692
+ "loss": 0.5997,
1693
+ "step": 278
1694
+ },
1695
+ {
1696
+ "epoch": 0.45,
1697
+ "learning_rate": 2.8866851385086652e-05,
1698
+ "loss": 0.772,
1699
+ "step": 279
1700
+ },
1701
+ {
1702
+ "epoch": 0.45,
1703
+ "learning_rate": 2.8741040647412538e-05,
1704
+ "loss": 0.6521,
1705
+ "step": 280
1706
+ },
1707
+ {
1708
+ "epoch": 0.45,
1709
+ "learning_rate": 2.8615132921090292e-05,
1710
+ "loss": 0.6677,
1711
+ "step": 281
1712
+ },
1713
+ {
1714
+ "epoch": 0.46,
1715
+ "learning_rate": 2.8489131470350727e-05,
1716
+ "loss": 0.6277,
1717
+ "step": 282
1718
+ },
1719
+ {
1720
+ "epoch": 0.46,
1721
+ "learning_rate": 2.836303956185453e-05,
1722
+ "loss": 0.7005,
1723
+ "step": 283
1724
+ },
1725
+ {
1726
+ "epoch": 0.46,
1727
+ "learning_rate": 2.8236860464607534e-05,
1728
+ "loss": 0.8361,
1729
+ "step": 284
1730
+ },
1731
+ {
1732
+ "epoch": 0.46,
1733
+ "learning_rate": 2.8110597449876014e-05,
1734
+ "loss": 0.6893,
1735
+ "step": 285
1736
+ },
1737
+ {
1738
+ "epoch": 0.46,
1739
+ "learning_rate": 2.7984253791101834e-05,
1740
+ "loss": 0.7185,
1741
+ "step": 286
1742
+ },
1743
+ {
1744
+ "epoch": 0.46,
1745
+ "learning_rate": 2.7857832763817622e-05,
1746
+ "loss": 0.703,
1747
+ "step": 287
1748
+ },
1749
+ {
1750
+ "epoch": 0.47,
1751
+ "learning_rate": 2.773133764556181e-05,
1752
+ "loss": 0.6402,
1753
+ "step": 288
1754
+ },
1755
+ {
1756
+ "epoch": 0.47,
1757
+ "learning_rate": 2.7604771715793697e-05,
1758
+ "loss": 0.6384,
1759
+ "step": 289
1760
+ },
1761
+ {
1762
+ "epoch": 0.47,
1763
+ "learning_rate": 2.74781382558084e-05,
1764
+ "loss": 0.8262,
1765
+ "step": 290
1766
+ },
1767
+ {
1768
+ "epoch": 0.47,
1769
+ "learning_rate": 2.735144054865181e-05,
1770
+ "loss": 0.7639,
1771
+ "step": 291
1772
+ },
1773
+ {
1774
+ "epoch": 0.47,
1775
+ "learning_rate": 2.722468187903544e-05,
1776
+ "loss": 0.7043,
1777
+ "step": 292
1778
+ },
1779
+ {
1780
+ "epoch": 0.47,
1781
+ "learning_rate": 2.7097865533251314e-05,
1782
+ "loss": 0.5832,
1783
+ "step": 293
1784
+ },
1785
+ {
1786
+ "epoch": 0.48,
1787
+ "learning_rate": 2.6970994799086735e-05,
1788
+ "loss": 0.681,
1789
+ "step": 294
1790
+ },
1791
+ {
1792
+ "epoch": 0.48,
1793
+ "learning_rate": 2.6844072965739054e-05,
1794
+ "loss": 0.658,
1795
+ "step": 295
1796
+ },
1797
+ {
1798
+ "epoch": 0.48,
1799
+ "learning_rate": 2.6717103323730396e-05,
1800
+ "loss": 0.6749,
1801
+ "step": 296
1802
+ },
1803
+ {
1804
+ "epoch": 0.48,
1805
+ "learning_rate": 2.6590089164822364e-05,
1806
+ "loss": 0.6759,
1807
+ "step": 297
1808
+ },
1809
+ {
1810
+ "epoch": 0.48,
1811
+ "learning_rate": 2.6463033781930673e-05,
1812
+ "loss": 0.5983,
1813
+ "step": 298
1814
+ },
1815
+ {
1816
+ "epoch": 0.48,
1817
+ "learning_rate": 2.633594046903981e-05,
1818
+ "loss": 0.7378,
1819
+ "step": 299
1820
+ },
1821
+ {
1822
+ "epoch": 0.49,
1823
+ "learning_rate": 2.62088125211176e-05,
1824
+ "loss": 0.7041,
1825
+ "step": 300
1826
+ },
1827
+ {
1828
+ "epoch": 0.49,
1829
+ "eval_loss": 0.7667814493179321,
1830
+ "eval_runtime": 5.4254,
1831
+ "eval_samples_per_second": 1.843,
1832
+ "eval_steps_per_second": 0.369,
1833
+ "step": 300
1834
+ }
1835
+ ],
1836
+ "logging_steps": 1,
1837
+ "max_steps": 618,
1838
+ "num_input_tokens_seen": 0,
1839
+ "num_train_epochs": 1,
1840
+ "save_steps": 100,
1841
+ "total_flos": 7.561791160713216e+17,
1842
+ "train_batch_size": 4,
1843
+ "trial_name": null,
1844
+ "trial_params": null
1845
+ }
checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1669fbc766ffe69b2e1c5c6cf99065bb5af64e12a25e45ff208dd48072c391fc
3
+ size 4792
checkpoint-400/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.2.dev0
checkpoint-400/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/lustre07/scratch/gagan30/arocr/meta-llama/models/FusionNet_7Bx2_MoE_14B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "gate",
24
+ "o_proj",
25
+ "w1",
26
+ "w3",
27
+ "k_proj",
28
+ "v_proj",
29
+ "w2"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_rslora": false
33
+ }
checkpoint-400/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64a17b3fa9574e66855740e7ab7b92c151db96622ffabfdcb62e4a7ad7e764ff
3
+ size 289512208
checkpoint-400/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bd7491af4b7fb0dfc9d2075f0c5365810d4e359b4320a34a78813c33c31f248
3
+ size 579246546
checkpoint-400/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:049c26b844b79121ddd8379f7f69194e63f6fbf6aa007eeac0c66f17eebb8893
3
+ size 888
checkpoint-400/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28e870b1698005b4198dd417c453350c8acd5e6367b862bef489f2fa92b5aad5
3
+ size 14244
checkpoint-400/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18a7cbdaff115ebbdbd626b08af973e9ad734f85d66a3354d40000428b39c458
3
+ size 1064
checkpoint-400/special_tokens_map.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": "</s>",
22
+ "unk_token": {
23
+ "content": "<unk>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ }
29
+ }
checkpoint-400/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-400/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443