XelotX bartowski commited on
Commit
78a6608
0 Parent(s):

Duplicate from bartowski/Qwen2.5-Coder-32B-Instruct-GGUF

Browse files

Co-authored-by: Bartowski <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Qwen2.5-Coder-32B-Instruct-Q6_K_L.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Qwen2.5-Coder-32B-Instruct-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Qwen2.5-Coder-32B-Instruct-Q5_K_L.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Qwen2.5-Coder-32B-Instruct-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Qwen2.5-Coder-32B-Instruct-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Qwen2.5-Coder-32B-Instruct-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Qwen2.5-Coder-32B-Instruct-Q4_K_L.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Qwen2.5-Coder-32B-Instruct-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Qwen2.5-Coder-32B-Instruct-Q4_0_8_8.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Qwen2.5-Coder-32B-Instruct-Q4_0_4_8.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Qwen2.5-Coder-32B-Instruct-Q4_0_4_4.gguf filter=lfs diff=lfs merge=lfs -text
48
+ Qwen2.5-Coder-32B-Instruct-Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Qwen2.5-Coder-32B-Instruct-IQ4_NL.gguf filter=lfs diff=lfs merge=lfs -text
50
+ Qwen2.5-Coder-32B-Instruct-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
51
+ Qwen2.5-Coder-32B-Instruct-Q3_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
52
+ Qwen2.5-Coder-32B-Instruct-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
53
+ Qwen2.5-Coder-32B-Instruct-Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
54
+ Qwen2.5-Coder-32B-Instruct-IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
55
+ Qwen2.5-Coder-32B-Instruct-Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
56
+ Qwen2.5-Coder-32B-Instruct-IQ3_XS.gguf filter=lfs diff=lfs merge=lfs -text
57
+ Qwen2.5-Coder-32B-Instruct-IQ3_XXS.gguf filter=lfs diff=lfs merge=lfs -text
58
+ Qwen2.5-Coder-32B-Instruct-Q2_K_L.gguf filter=lfs diff=lfs merge=lfs -text
59
+ Qwen2.5-Coder-32B-Instruct-Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
60
+ Qwen2.5-Coder-32B-Instruct-IQ2_M.gguf filter=lfs diff=lfs merge=lfs -text
61
+ Qwen2.5-Coder-32B-Instruct-IQ2_S.gguf filter=lfs diff=lfs merge=lfs -text
62
+ Qwen2.5-Coder-32B-Instruct-IQ2_XS.gguf filter=lfs diff=lfs merge=lfs -text
63
+ Qwen2.5-Coder-32B-Instruct-IQ2_XXS.gguf filter=lfs diff=lfs merge=lfs -text
64
+ Qwen2.5-Coder-32B-Instruct.imatrix filter=lfs diff=lfs merge=lfs -text
Qwen2.5-Coder-32B-Instruct-IQ2_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e10282de5567d1c424c429d75f3cbedb1b38c954d3af74f70a8a8ca9aa00cb5
3
+ size 11264441312
Qwen2.5-Coder-32B-Instruct-IQ2_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9ba2f5eed771c0f61bc97dbc5d7db14e579ef3cc5afb4f60de0c7723d211b18
3
+ size 10387569632
Qwen2.5-Coder-32B-Instruct-IQ2_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c97514d470de85332709e401893f75cbeeda68b8528b0ae77a2afaaa0d10ed99
3
+ size 9957551072
Qwen2.5-Coder-32B-Instruct-IQ2_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6459f054204ab5c412b1240f2ab3bde4527aa6495d24156f01f38076a1bccdeb
3
+ size 9028250592
Qwen2.5-Coder-32B-Instruct-IQ3_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b22ab8aa2b31413f32d8a06a0e32850d2193f1021b29f7fff4bf4122870a496e
3
+ size 14810123232
Qwen2.5-Coder-32B-Instruct-IQ3_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ace31c61adb93ca557f1ab4da6e66fd76dda876af43979e92f9b275ad94f06d6
3
+ size 13705513952
Qwen2.5-Coder-32B-Instruct-IQ3_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b69f5d26681aa7912db5ea0160b46eea8101320776336fce2e48ef638ffd40f
3
+ size 12839271392
Qwen2.5-Coder-32B-Instruct-IQ4_NL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f838cb11b6d59486db5ba67e4e86db2dd462a07c41e5ce3e013ef9cc9eed2fc
3
+ size 18682174432
Qwen2.5-Coder-32B-Instruct-IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f94f9ef4e183a3d1996200c8350ceebfbeb4049fae5a5eb6ed78de75a537bfd9
3
+ size 17693154272
Qwen2.5-Coder-32B-Instruct-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07f788c0cf31bf3e85df0e230ecf077556c28466b49f25b7dcd46d361929b351
3
+ size 12313099232
Qwen2.5-Coder-32B-Instruct-Q2_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91c473b4488b4460dedd941daec618fc4cd2b0fcbc0e70e715816a723f2a4ee0
3
+ size 13073419232
Qwen2.5-Coder-32B-Instruct-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58c6b7f9768d98bfb4916f98dad1817eb29110df3b00436af0a4d3370f9c5e19
3
+ size 17247079392
Qwen2.5-Coder-32B-Instruct-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98a9c52ad7727f72759055ec204cd8111fdf46210cdeac0c07fa78cbc71c1177
3
+ size 15935048672
Qwen2.5-Coder-32B-Instruct-Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e135b697db3bf4234b4ee116919b34b3ae882d2cad246682ef74bfac34b8e47d
3
+ size 14392331232
Qwen2.5-Coder-32B-Instruct-Q3_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e880b16e01ce86b6986c5ba044217285c1e6f8685e4704a565c206a759bed3db
3
+ size 17928326112
Qwen2.5-Coder-32B-Instruct-Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f6cdbed22cd958ef298af1ccc3e343d154d58de4e13038cb6ff66d8ac7a14d8
3
+ size 18711010272
Qwen2.5-Coder-32B-Instruct-Q4_0_4_4.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b05dc740a8dea0e60f3bf3f7a5140faee7a37cdef82d6c6c6efc75ac0c92359
3
+ size 18640231392
Qwen2.5-Coder-32B-Instruct-Q4_0_4_8.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84d28a4630d61cfbe1eae952587aa60de6ba42423e3bc0b8de48a20ca0a4f2a4
3
+ size 18640231392
Qwen2.5-Coder-32B-Instruct-Q4_0_8_8.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9a5e256dba11d79454c8b98250f2ee6ed3b5e26c0cf390c4ad82e8395d4aeef
3
+ size 18640231392
Qwen2.5-Coder-32B-Instruct-Q4_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cbe15cdeea8c2048092add18a3b886d381e35461b0ef52903c51a5d2f0f848b
3
+ size 20429179872
Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e2fd78ff55e7cdf577fda257bac2776feb7d73d922613caf35468073807e815
3
+ size 19851336672
Qwen2.5-Coder-32B-Instruct-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb37431cd01fdc45795d2363744e95e37e0a90c374d855d354ab6e972923e6a0
3
+ size 18784410592
Qwen2.5-Coder-32B-Instruct-Q5_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35aa69f9a74f46b71f17d28cfb64b464343ca395a7dbad6755ae2d3b01a80f96
3
+ size 23742680032
Qwen2.5-Coder-32B-Instruct-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4e15b1099adf59cade80da369400199e4d7922d7e16b717bbfcda4d08a0702f
3
+ size 23262157792
Qwen2.5-Coder-32B-Instruct-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ebb70cfdbc4780a34142393418f9f570a82b0650ee4f9031c2f588a4379067c
3
+ size 22638255072
Qwen2.5-Coder-32B-Instruct-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99c4f668b96cd9e2f0d1c5af811124f59559d8d13da65892993eaa8bca14dc13
3
+ size 26886155232
Qwen2.5-Coder-32B-Instruct-Q6_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e8a4480abc5fc6f77f33cc9397b88de4b3a2259ef864293ddaaf6212f050a16
3
+ size 27263273952
Qwen2.5-Coder-32B-Instruct-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e9f8a595c3be1678e3c9a2df19f17e1f5fdd9f2e7b47fcda7b21799c047f575
3
+ size 34820885184
Qwen2.5-Coder-32B-Instruct.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef2582bd531a43d64cb05e021158c654877521f1be289464898df79bfd8c94cb
3
+ size 14957098
README.md ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ quantized_by: bartowski
3
+ pipeline_tag: text-generation
4
+ language:
5
+ - en
6
+ license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct/blob/main/LICENSE
7
+ tags:
8
+ - code
9
+ - codeqwen
10
+ - chat
11
+ - qwen
12
+ - qwen-coder
13
+ base_model: Qwen/Qwen2.5-Coder-32B-Instruct
14
+ license: apache-2.0
15
+ ---
16
+
17
+ ## Llamacpp imatrix Quantizations of Qwen2.5-Coder-32B-Instruct
18
+
19
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b4014">b4014</a> for quantization.
20
+
21
+ Original model: https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
22
+
23
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
24
+
25
+ Run them in [LM Studio](https://lmstudio.ai/)
26
+
27
+ ## Prompt format
28
+
29
+ ```
30
+ <|im_start|>system
31
+ {system_prompt}<|im_end|>
32
+ <|im_start|>user
33
+ {prompt}<|im_end|>
34
+ <|im_start|>assistant
35
+ ```
36
+
37
+ ## Download a file (not the whole branch) from below:
38
+
39
+ | Filename | Quant type | File Size | Split | Description |
40
+ | -------- | ---------- | --------- | ----- | ----------- |
41
+ | [Qwen2.5-Coder-32B-Instruct-Q8_0.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q8_0.gguf) | Q8_0 | 34.82GB | false | Extremely high quality, generally unneeded but max available quant. |
42
+ | [Qwen2.5-Coder-32B-Instruct-Q6_K_L.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q6_K_L.gguf) | Q6_K_L | 27.26GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
43
+ | [Qwen2.5-Coder-32B-Instruct-Q6_K.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q6_K.gguf) | Q6_K | 26.89GB | false | Very high quality, near perfect, *recommended*. |
44
+ | [Qwen2.5-Coder-32B-Instruct-Q5_K_L.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q5_K_L.gguf) | Q5_K_L | 23.74GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
45
+ | [Qwen2.5-Coder-32B-Instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q5_K_M.gguf) | Q5_K_M | 23.26GB | false | High quality, *recommended*. |
46
+ | [Qwen2.5-Coder-32B-Instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q5_K_S.gguf) | Q5_K_S | 22.64GB | false | High quality, *recommended*. |
47
+ | [Qwen2.5-Coder-32B-Instruct-Q4_K_L.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_K_L.gguf) | Q4_K_L | 20.43GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
48
+ | [Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf) | Q4_K_M | 19.85GB | false | Good quality, default size for most use cases, *recommended*. |
49
+ | [Qwen2.5-Coder-32B-Instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_K_S.gguf) | Q4_K_S | 18.78GB | false | Slightly lower quality with more space savings, *recommended*. |
50
+ | [Qwen2.5-Coder-32B-Instruct-Q4_0.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_0.gguf) | Q4_0 | 18.71GB | false | Legacy format, generally not worth using over similarly sized formats |
51
+ | [Qwen2.5-Coder-32B-Instruct-IQ4_NL.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ4_NL.gguf) | IQ4_NL | 18.68GB | false | Similar to IQ4_XS, but slightly larger. |
52
+ | [Qwen2.5-Coder-32B-Instruct-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_0_8_8.gguf) | Q4_0_8_8 | 18.64GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). *Don't use on Mac or Windows*. |
53
+ | [Qwen2.5-Coder-32B-Instruct-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_0_4_8.gguf) | Q4_0_4_8 | 18.64GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). *Don't use on Mac or Windows*. |
54
+ | [Qwen2.5-Coder-32B-Instruct-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_0_4_4.gguf) | Q4_0_4_4 | 18.64GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. *Don't use on Mac or Windows*. |
55
+ | [Qwen2.5-Coder-32B-Instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q3_K_XL.gguf) | Q3_K_XL | 17.93GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
56
+ | [Qwen2.5-Coder-32B-Instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ4_XS.gguf) | IQ4_XS | 17.69GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
57
+ | [Qwen2.5-Coder-32B-Instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q3_K_L.gguf) | Q3_K_L | 17.25GB | false | Lower quality but usable, good for low RAM availability. |
58
+ | [Qwen2.5-Coder-32B-Instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q3_K_M.gguf) | Q3_K_M | 15.94GB | false | Low quality. |
59
+ | [Qwen2.5-Coder-32B-Instruct-IQ3_M.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ3_M.gguf) | IQ3_M | 14.81GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
60
+ | [Qwen2.5-Coder-32B-Instruct-Q3_K_S.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q3_K_S.gguf) | Q3_K_S | 14.39GB | false | Low quality, not recommended. |
61
+ | [Qwen2.5-Coder-32B-Instruct-IQ3_XS.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ3_XS.gguf) | IQ3_XS | 13.71GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
62
+ | [Qwen2.5-Coder-32B-Instruct-Q2_K_L.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q2_K_L.gguf) | Q2_K_L | 13.07GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
63
+ | [Qwen2.5-Coder-32B-Instruct-IQ3_XXS.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ3_XXS.gguf) | IQ3_XXS | 12.84GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. |
64
+ | [Qwen2.5-Coder-32B-Instruct-Q2_K.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q2_K.gguf) | Q2_K | 12.31GB | false | Very low quality but surprisingly usable. |
65
+ | [Qwen2.5-Coder-32B-Instruct-IQ2_M.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ2_M.gguf) | IQ2_M | 11.26GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. |
66
+ | [Qwen2.5-Coder-32B-Instruct-IQ2_S.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ2_S.gguf) | IQ2_S | 10.39GB | false | Low quality, uses SOTA techniques to be usable. |
67
+ | [Qwen2.5-Coder-32B-Instruct-IQ2_XS.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ2_XS.gguf) | IQ2_XS | 9.96GB | false | Low quality, uses SOTA techniques to be usable. |
68
+ | [Qwen2.5-Coder-32B-Instruct-IQ2_XXS.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ2_XXS.gguf) | IQ2_XXS | 9.03GB | false | Very low quality, uses SOTA techniques to be usable. |
69
+
70
+ ## Embed/output weights
71
+
72
+ Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
73
+
74
+ Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using.
75
+
76
+ Thanks!
77
+
78
+ ## Downloading using huggingface-cli
79
+
80
+ First, make sure you have hugginface-cli installed:
81
+
82
+ ```
83
+ pip install -U "huggingface_hub[cli]"
84
+ ```
85
+
86
+ Then, you can target the specific file you want:
87
+
88
+ ```
89
+ huggingface-cli download bartowski/Qwen2.5-Coder-32B-Instruct-GGUF --include "Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf" --local-dir ./
90
+ ```
91
+
92
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
93
+
94
+ ```
95
+ huggingface-cli download bartowski/Qwen2.5-Coder-32B-Instruct-GGUF --include "Qwen2.5-Coder-32B-Instruct-Q8_0/*" --local-dir ./
96
+ ```
97
+
98
+ You can either specify a new local-dir (Qwen2.5-Coder-32B-Instruct-Q8_0) or download them all in place (./)
99
+
100
+ ## Q4_0_X_X
101
+
102
+ These are *NOT* for Metal (Apple) offloading, only ARM chips.
103
+
104
+ If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660)
105
+
106
+ To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!).
107
+
108
+ ## Which file should I choose?
109
+
110
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
111
+
112
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
113
+
114
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
115
+
116
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
117
+
118
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
119
+
120
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
121
+
122
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
123
+
124
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
125
+
126
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
127
+
128
+ These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
129
+
130
+ The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
131
+
132
+ ## Credits
133
+
134
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset.
135
+
136
+ Thank you ZeroWw for the inspiration to experiment with embed/output.
137
+
138
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski