|
""" |
|
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet). |
|
GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned |
|
using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss. |
|
""" |
|
|
|
import logging |
|
import math |
|
import os |
|
from dataclasses import dataclass, field |
|
from glob import glob |
|
from typing import Optional |
|
|
|
from torch.utils.data import ConcatDataset |
|
|
|
import transformers |
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
MODEL_WITH_LM_HEAD_MAPPING, |
|
AutoConfig, |
|
AutoModelWithLMHead, |
|
AutoTokenizer, |
|
DataCollatorForLanguageModeling, |
|
DataCollatorForPermutationLanguageModeling, |
|
DataCollatorForWholeWordMask, |
|
HfArgumentParser, |
|
LineByLineTextDataset, |
|
LineByLineWithRefDataset, |
|
PreTrainedTokenizer, |
|
TextDataset, |
|
Trainer, |
|
TrainingArguments, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import is_main_process |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The model checkpoint for weights initialization. Leave None if you want to train a model from" |
|
" scratch." |
|
) |
|
}, |
|
) |
|
model_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
train_data_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a text file)."} |
|
) |
|
train_data_files: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The input training data files (multiple files in glob format). " |
|
"Very often splitting large files to smaller files can prevent tokenizer going out of memory" |
|
) |
|
}, |
|
) |
|
eval_data_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, |
|
) |
|
train_ref_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input train ref data file for whole word mask in Chinese."}, |
|
) |
|
eval_ref_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."}, |
|
) |
|
line_by_line: bool = field( |
|
default=False, |
|
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, |
|
) |
|
|
|
mlm: bool = field( |
|
default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."} |
|
) |
|
whole_word_mask: bool = field(default=False, metadata={"help": "Whether ot not to use whole word mask."}) |
|
mlm_probability: float = field( |
|
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} |
|
) |
|
plm_probability: float = field( |
|
default=1 / 6, |
|
metadata={ |
|
"help": ( |
|
"Ratio of length of a span of masked tokens to surrounding context length for permutation language" |
|
" modeling." |
|
) |
|
}, |
|
) |
|
max_span_length: int = field( |
|
default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} |
|
) |
|
|
|
block_size: int = field( |
|
default=-1, |
|
metadata={ |
|
"help": ( |
|
"Optional input sequence length after tokenization. " |
|
"The training dataset will be truncated in block of this size for training." |
|
"Default to the model max input length for single sentence inputs (take into account special tokens)." |
|
) |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
|
|
|
|
def get_dataset( |
|
args: DataTrainingArguments, |
|
tokenizer: PreTrainedTokenizer, |
|
evaluate: bool = False, |
|
cache_dir: Optional[str] = None, |
|
): |
|
def _dataset(file_path, ref_path=None): |
|
if args.line_by_line: |
|
if ref_path is not None: |
|
if not args.whole_word_mask or not args.mlm: |
|
raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask") |
|
return LineByLineWithRefDataset( |
|
tokenizer=tokenizer, |
|
file_path=file_path, |
|
block_size=args.block_size, |
|
ref_path=ref_path, |
|
) |
|
|
|
return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size) |
|
else: |
|
return TextDataset( |
|
tokenizer=tokenizer, |
|
file_path=file_path, |
|
block_size=args.block_size, |
|
overwrite_cache=args.overwrite_cache, |
|
cache_dir=cache_dir, |
|
) |
|
|
|
if evaluate: |
|
return _dataset(args.eval_data_file, args.eval_ref_file) |
|
elif args.train_data_files: |
|
return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)]) |
|
else: |
|
return _dataset(args.train_data_file, args.train_ref_file) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
if data_args.eval_data_file is None and training_args.do_eval: |
|
raise ValueError( |
|
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " |
|
"or remove the --do_eval argument." |
|
) |
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" |
|
" --overwrite_output_dir to overcome." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, |
|
) |
|
logger.warning( |
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
training_args.local_rank, |
|
training_args.device, |
|
training_args.n_gpu, |
|
bool(training_args.local_rank != -1), |
|
training_args.fp16, |
|
) |
|
|
|
if is_main_process(training_args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if model_args.config_name: |
|
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) |
|
elif model_args.model_name_or_path: |
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) |
|
else: |
|
config = CONFIG_MAPPING[model_args.model_type]() |
|
logger.warning("You are instantiating a new config instance from scratch.") |
|
|
|
if model_args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir) |
|
elif model_args.model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) |
|
else: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" |
|
" script, save it,and load it from here, using --tokenizer_name" |
|
) |
|
|
|
if model_args.model_name_or_path: |
|
model = AutoModelWithLMHead.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
) |
|
else: |
|
logger.info("Training new model from scratch") |
|
model = AutoModelWithLMHead.from_config(config) |
|
|
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: |
|
raise ValueError( |
|
"BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the " |
|
"--mlm flag (masked language modeling)." |
|
) |
|
|
|
if data_args.block_size <= 0: |
|
data_args.block_size = tokenizer.max_len |
|
|
|
else: |
|
data_args.block_size = min(data_args.block_size, tokenizer.max_len) |
|
|
|
|
|
|
|
train_dataset = ( |
|
get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None |
|
) |
|
eval_dataset = ( |
|
get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir) |
|
if training_args.do_eval |
|
else None |
|
) |
|
if config.model_type == "xlnet": |
|
data_collator = DataCollatorForPermutationLanguageModeling( |
|
tokenizer=tokenizer, |
|
plm_probability=data_args.plm_probability, |
|
max_span_length=data_args.max_span_length, |
|
) |
|
else: |
|
if data_args.mlm and data_args.whole_word_mask: |
|
data_collator = DataCollatorForWholeWordMask( |
|
tokenizer=tokenizer, mlm_probability=data_args.mlm_probability |
|
) |
|
else: |
|
data_collator = DataCollatorForLanguageModeling( |
|
tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
prediction_loss_only=True, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
model_path = ( |
|
model_args.model_name_or_path |
|
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) |
|
else None |
|
) |
|
trainer.train(model_path=model_path) |
|
trainer.save_model() |
|
|
|
|
|
if trainer.is_world_master(): |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
|
|
|
|
results = {} |
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
|
|
eval_output = trainer.evaluate() |
|
|
|
perplexity = math.exp(eval_output["eval_loss"]) |
|
result = {"perplexity": perplexity} |
|
|
|
output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt") |
|
if trainer.is_world_master(): |
|
with open(output_eval_file, "w") as writer: |
|
logger.info("***** Eval results *****") |
|
for key in sorted(result.keys()): |
|
logger.info(" %s = %s", key, str(result[key])) |
|
writer.write("%s = %s\n" % (key, str(result[key]))) |
|
|
|
results.update(result) |
|
|
|
return results |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |