Winmodel commited on
Commit
f97ce51
1 Parent(s): 355156d

End of training

Browse files
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.8614
36
+ - Accuracy: 0.8
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 16
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 20
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 2.2268 | 0.99 | 56 | 2.1858 | 0.48 |
72
+ | 1.7472 | 2.0 | 113 | 1.6259 | 0.58 |
73
+ | 1.3293 | 2.99 | 169 | 1.1815 | 0.72 |
74
+ | 1.0368 | 4.0 | 226 | 1.0176 | 0.69 |
75
+ | 0.8106 | 4.99 | 282 | 0.8129 | 0.76 |
76
+ | 0.5371 | 6.0 | 339 | 0.8296 | 0.72 |
77
+ | 0.6545 | 6.99 | 395 | 0.7186 | 0.77 |
78
+ | 0.4676 | 8.0 | 452 | 0.6627 | 0.76 |
79
+ | 0.2729 | 8.99 | 508 | 0.5993 | 0.84 |
80
+ | 0.2113 | 10.0 | 565 | 0.6360 | 0.8 |
81
+ | 0.1475 | 10.99 | 621 | 0.6244 | 0.78 |
82
+ | 0.0616 | 12.0 | 678 | 0.6762 | 0.83 |
83
+ | 0.0429 | 12.99 | 734 | 0.7241 | 0.82 |
84
+ | 0.0259 | 14.0 | 791 | 0.7547 | 0.82 |
85
+ | 0.0207 | 14.99 | 847 | 0.7636 | 0.82 |
86
+ | 0.0179 | 16.0 | 904 | 0.7817 | 0.82 |
87
+ | 0.0304 | 16.99 | 960 | 0.7976 | 0.81 |
88
+ | 0.0146 | 18.0 | 1017 | 0.8193 | 0.81 |
89
+ | 0.0135 | 18.99 | 1073 | 0.8402 | 0.8 |
90
+ | 0.0136 | 19.82 | 1120 | 0.8614 | 0.8 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.35.2
96
+ - Pytorch 2.1.0+cu121
97
+ - Datasets 2.16.1
98
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:18ec0b6c467f68fc2aa2856a8718ccd61744783c4f255473b60e00ac67d08748
3
  size 94771728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aacb365b523c3dbaf1eafacfb52ab3424402ff37da168a47dac8a48e312add9
3
  size 94771728
runs/Jan17_02-10-35_d4b1c7a1dddd/events.out.tfevents.1705457447.d4b1c7a1dddd.152.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:68dbd623640597effe94d72847164b56ca7070132c6a3c517a3a5e4b27c38b35
3
- size 45079
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a50a5281ca2af0e970014bad8372d86e8e38653d2eb961e7b946801302abe7c5
3
+ size 47326