--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xlsr-53-english-finetuned-ravdess-v7 results: [] --- # wav2vec2-large-xlsr-53-english-finetuned-ravdess-v7 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8320 - Accuracy: 0.7986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2518 | 0.15 | 25 | 1.0813 | 0.7222 | | 0.4377 | 0.31 | 50 | 1.3678 | 0.6389 | | 0.471 | 0.46 | 75 | 1.2841 | 0.6458 | | 0.6906 | 0.62 | 100 | 1.0845 | 0.6736 | | 0.8409 | 0.77 | 125 | 0.9987 | 0.7222 | | 0.5912 | 0.93 | 150 | 0.9029 | 0.7292 | | 0.6029 | 1.08 | 175 | 1.0862 | 0.6597 | | 0.4525 | 1.23 | 200 | 1.0455 | 0.6806 | | 0.4263 | 1.39 | 225 | 1.4209 | 0.6389 | | 0.4866 | 1.54 | 250 | 1.0648 | 0.7222 | | 0.3619 | 1.7 | 275 | 0.9949 | 0.7083 | | 0.7256 | 1.85 | 300 | 1.1846 | 0.6875 | | 0.3964 | 2.01 | 325 | 0.9130 | 0.7222 | | 0.2853 | 2.16 | 350 | 1.0839 | 0.7292 | | 0.3022 | 2.31 | 375 | 0.7729 | 0.7847 | | 0.3631 | 2.47 | 400 | 1.2372 | 0.7153 | | 0.3029 | 2.62 | 425 | 0.9880 | 0.7778 | | 0.2665 | 2.78 | 450 | 1.1243 | 0.7569 | | 0.2743 | 2.93 | 475 | 0.8395 | 0.7778 | | 0.1787 | 3.09 | 500 | 0.8320 | 0.7986 | | 0.1533 | 3.24 | 525 | 0.8909 | 0.7778 | | 0.1636 | 3.4 | 550 | 1.1212 | 0.7569 | | 0.1677 | 3.55 | 575 | 0.9527 | 0.7986 | | 0.1166 | 3.7 | 600 | 0.9082 | 0.8056 | | 0.1923 | 3.86 | 625 | 1.1074 | 0.75 | | 0.108 | 4.01 | 650 | 1.0360 | 0.7847 | | 0.1023 | 4.17 | 675 | 1.0964 | 0.7708 | | 0.1122 | 4.32 | 700 | 1.2101 | 0.7569 | | 0.1501 | 4.48 | 725 | 0.9138 | 0.8125 | | 0.098 | 4.63 | 750 | 0.8422 | 0.8194 | | 0.0585 | 4.78 | 775 | 1.0018 | 0.7917 | | 0.1135 | 4.94 | 800 | 1.0409 | 0.7847 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3