--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xlsr-53-english-finetuned-ravdess-v5 results: [] --- # wav2vec2-large-xlsr-53-english-finetuned-ravdess-v5 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8443 - Accuracy: 0.7257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 9 | 2.0697 | 0.1424 | | 2.0767 | 2.0 | 18 | 2.0585 | 0.2292 | | 2.0642 | 3.0 | 27 | 2.0382 | 0.2118 | | 2.0463 | 4.0 | 36 | 1.9870 | 0.2361 | | 1.9984 | 5.0 | 45 | 1.8878 | 0.3160 | | 1.8817 | 6.0 | 54 | 1.7381 | 0.3785 | | 1.743 | 7.0 | 63 | 1.6483 | 0.4062 | | 1.6047 | 8.0 | 72 | 1.5459 | 0.4340 | | 1.4919 | 9.0 | 81 | 1.4229 | 0.4653 | | 1.4067 | 10.0 | 90 | 1.3539 | 0.4479 | | 1.4067 | 11.0 | 99 | 1.2584 | 0.5243 | | 1.3039 | 12.0 | 108 | 1.2465 | 0.5243 | | 1.2376 | 13.0 | 117 | 1.1980 | 0.5451 | | 1.1504 | 14.0 | 126 | 1.1339 | 0.625 | | 1.0479 | 15.0 | 135 | 1.1273 | 0.6007 | | 0.9986 | 16.0 | 144 | 1.0976 | 0.6215 | | 0.9289 | 17.0 | 153 | 1.0150 | 0.6528 | | 0.9288 | 18.0 | 162 | 0.9629 | 0.6667 | | 0.8092 | 19.0 | 171 | 0.9882 | 0.6528 | | 0.7641 | 20.0 | 180 | 0.9357 | 0.6806 | | 0.7641 | 21.0 | 189 | 0.9578 | 0.6840 | | 0.7073 | 22.0 | 198 | 0.8655 | 0.6806 | | 0.7277 | 23.0 | 207 | 1.0007 | 0.6632 | | 0.6614 | 24.0 | 216 | 0.8399 | 0.7222 | | 0.6571 | 25.0 | 225 | 0.8995 | 0.6875 | | 0.6304 | 26.0 | 234 | 0.8523 | 0.7118 | | 0.6298 | 27.0 | 243 | 0.8918 | 0.7049 | | 0.5929 | 28.0 | 252 | 0.8510 | 0.7222 | | 0.5915 | 29.0 | 261 | 0.8443 | 0.7257 | | 0.5807 | 30.0 | 270 | 0.8536 | 0.7257 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3