File size: 4,275 Bytes
a5f5615 af5e13c c1b1530 070bba1 a5f5615 91f18df a5f5615 91f18df a5f5615 48423c4 e8f510d 48423c4 c1b1530 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
license: apache-2.0
model-index:
- name: OpenHermes-2.5-neural-chat-v3-3-Slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.09
name: normalized accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.2
name: normalized accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.26
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 62.78
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.16
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.78
name: accuracy
tags:
- merge
base_model:
- teknium/OpenHermes-2.5-Mistral-7B
- Intel/neural-chat-7b-v3-3
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/x44nNbPTpv0zGTqA1Jb2q.png)
# OpenHermes-2.5-neural-chat-v3-3-Slerp
This is the model for OpenHermes-2.5-neural-chat-v3-3-Slerp. I used [mergekit](https://github.com/cg123/mergekit) to merge models.
# Prompt Templates
You can use these prompt templates, but I recommend using ChatML.
### ChatML [(OpenHermes-2.5-Mistral-7B)](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B):
```
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
```
### [neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3):
```
### System:
{system}
### User:
{user}
### Assistant:
```
# Yaml Config to reproduce
```yaml
slices:
- sources:
- model: teknium/OpenHermes-2.5-Mistral-7B
layer_range: [0, 32]
- model: Intel/neural-chat-7b-v3-3
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-v0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
```
# Quantizationed versions
Quantizationed versions of this model is available thanks to [TheBloke](https://hf.co/TheBloke).
##### GPTQ
- [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GPTQ)
##### GGUF
- [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GGUF](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-GGUF)
##### AWQ
- [TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-AWQ](https://huggingface.co/TheBloke/OpenHermes-2.5-neural-chat-v3-3-Slerp-AWQ)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_PulsarAI__OpenHermes-2.5-neural-chat-v3-3-Slerp)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 71.38 |
| ARC (25-shot) | 68.09 |
| HellaSwag (10-shot) | 86.2 |
| MMLU (5-shot) | 64.26 |
| TruthfulQA (0-shot) | 62.78 |
| Winogrande (5-shot) | 79.16 |
| GSM8K (5-shot) | 67.78 | |