beamaia commited on
Commit
4bb342f
1 Parent(s): b066703

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +59 -59
README.md CHANGED
@@ -1,90 +1,90 @@
1
  ---
2
  license: mit
3
- library_name: peft
4
  tags:
5
- - trl
6
- - kto
7
  - KTO
8
  - WeniGPT
9
- - generated_from_trainer
10
  base_model: HuggingFaceH4/zephyr-7b-beta
11
  model-index:
12
- - name: kto-test
13
  results: []
 
14
  ---
15
 
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
 
19
- # kto-test
20
 
21
- This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.0147
24
- - Rewards/chosen: 5.6143
25
- - Rewards/rejected: -31.0540
26
- - Rewards/margins: 36.6683
27
- - Kl: 0.0
28
- - Logps/chosen: -130.3461
29
- - Logps/rejected: -503.4655
30
 
31
- ## Model description
32
 
33
- More information needed
34
 
35
- ## Intended uses & limitations
36
 
37
- More information needed
38
 
39
- ## Training and evaluation data
 
 
 
 
 
 
40
 
41
- More information needed
 
42
 
43
- ## Training procedure
 
 
 
 
 
 
 
 
 
44
 
45
  ### Training hyperparameters
46
 
47
  The following hyperparameters were used during training:
48
  - learning_rate: 0.0002
49
- - train_batch_size: 2
50
- - eval_batch_size: 2
51
- - seed: 42
52
- - distributed_type: multi-GPU
53
- - num_devices: 2
54
  - gradient_accumulation_steps: 8
55
- - total_train_batch_size: 32
56
- - total_eval_batch_size: 4
57
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
58
- - lr_scheduler_type: linear
59
- - lr_scheduler_warmup_ratio: 0.03
60
- - training_steps: 786
61
- - mixed_precision_training: Native AMP
62
 
63
  ### Training results
64
 
65
- | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/margins | Kl | Logps/chosen | Logps/rejected |
66
- |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:---------------:|:------:|:------------:|:--------------:|
67
- | 371.0873 | 0.38 | 50 | 0.0440 | 4.6808 | -9.5189 | 14.1997 | 0.0150 | -139.6814 | -288.1148 |
68
- | 57.9834 | 0.76 | 100 | 0.0275 | 5.1394 | -31.8945 | 37.0339 | 0.0 | -135.0947 | -511.8704 |
69
- | 37.3685 | 1.14 | 150 | 0.0196 | 5.2556 | -27.1934 | 32.4491 | 0.0 | -133.9325 | -464.8599 |
70
- | 3.6561 | 1.52 | 200 | 0.0162 | 5.4306 | -22.6310 | 28.0615 | 0.0 | -132.1833 | -419.2354 |
71
- | 59.5367 | 1.9 | 250 | 0.0143 | 5.7355 | -31.1619 | 36.8974 | 0.0 | -129.1339 | -504.5448 |
72
- | 13.1891 | 2.29 | 300 | 0.0147 | 5.6143 | -31.0540 | 36.6683 | 0.0 | -130.3461 | -503.4655 |
73
- | 3.8532 | 2.67 | 350 | 0.0131 | 5.8860 | -26.4154 | 32.3014 | 0.0 | -127.6289 | -457.0801 |
74
- | 3.7678 | 3.05 | 400 | 0.0162 | 5.9318 | -26.7524 | 32.6841 | 0.0 | -127.1711 | -460.4493 |
75
- | 49.3456 | 3.43 | 450 | 0.0167 | 5.9252 | -28.7033 | 34.6286 | 0.0 | -127.2365 | -479.9590 |
76
- | 12.2886 | 3.81 | 500 | 0.0164 | 6.0009 | -29.4493 | 35.4501 | 0.0 | -126.4803 | -487.4185 |
77
- | 2.3745 | 4.19 | 550 | 0.0173 | 6.0124 | -29.9808 | 35.9932 | 0.0 | -126.3649 | -492.7338 |
78
- | 0.46 | 4.57 | 600 | 0.0173 | 6.0060 | -30.4606 | 36.4666 | 0.0 | -126.4293 | -497.5318 |
79
- | 7.7723 | 4.95 | 650 | 0.0180 | 6.0079 | -30.7030 | 36.7109 | 0.0 | -126.4096 | -499.9554 |
80
- | 4.1333 | 5.33 | 700 | 0.0184 | 6.0037 | -30.8948 | 36.8984 | 0.0 | -126.4521 | -501.8734 |
81
- | 1.6938 | 5.71 | 750 | 0.0183 | 6.0119 | -30.9672 | 36.9791 | 0.0 | -126.3704 | -502.5979 |
82
-
83
-
84
  ### Framework versions
85
 
86
- - PEFT 0.10.0
87
- - Transformers 4.39.1
88
- - Pytorch 2.1.0+cu118
89
- - Datasets 2.18.0
90
- - Tokenizers 0.15.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ library_name: "trl"
4
  tags:
 
 
5
  - KTO
6
  - WeniGPT
 
7
  base_model: HuggingFaceH4/zephyr-7b-beta
8
  model-index:
9
+ - name: Weni/kto-test
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/kto-test
 
15
 
16
+ This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta] on the dataset Weni/WeniGPT-QA-Binarized-1.2.0 with the KTO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
 
 
18
  It achieves the following results on the evaluation set:
19
+ {'eval_loss': 0.014748962596058846, 'eval_runtime': 437.183, 'eval_samples_per_second': 1.07, 'eval_steps_per_second': 0.268, 'eval_rewards/chosen': 5.614275932312012, 'eval_rewards/rejected': -31.05398178100586, 'eval_rewards/margins': 36.66826248168945, 'eval_kl': 0.0, 'eval_logps/chosen': -130.3461151123047, 'eval_logps/rejected': -503.4655456542969, 'epoch': 5.99}
 
 
 
 
 
 
20
 
21
+ ## Intended uses & limitations
22
 
23
+ This model has not been trained to avoid specific intructions.
24
 
25
+ ## Training procedure
26
 
27
+ Finetuning was done on the model HuggingFaceH4/zephyr-7b-beta with the following prompt:
28
 
29
+ ```
30
+ ---------------------
31
+ Question:
32
+ <|system|>
33
+ Você é um médico tratando um paciente com amnésia. Para responder as perguntas do paciente, você irá ler um texto anteriormente para se contextualizar. Se você trouxer informações desconhecidas, fora do texto lido, poderá deixar o paciente confuso. Se o paciente fizer uma questão sobre informações não presentes no texto, você precisa responder de forma educada que você não tem informação suficiente para responder, pois se tentar responder, pode trazer informações que não ajudarão o paciente recuperar sua memória. Lembre, se não estiver no texto, você precisa responder de forma educada que você não tem informação suficiente para responder. Precisamos ajudar o paciente.
34
+ <|user|>
35
+ Contexto: {context}
36
 
37
+ Questão: {question}</s>
38
+ <|assistant|>
39
 
40
+
41
+
42
+ ---------------------
43
+ Response:
44
+ {response}</s>
45
+
46
+
47
+ ---------------------
48
+
49
+ ```
50
 
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
  - learning_rate: 0.0002
55
+ - per_device_train_batch_size: 2
56
+ - per_device_eval_batch_size: 2
 
 
 
57
  - gradient_accumulation_steps: 8
58
+ - num_gpus: 1
59
+ - total_train_batch_size: 16
60
+ - optimizer: AdamW
61
+ - lr_scheduler_type: cosine
62
+ - num_steps: 786
63
+ - quantization_type: bitsandbytes
64
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",)
65
 
66
  ### Training results
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  ### Framework versions
69
 
70
+ - transformers==4.39.1
71
+ - datasets==2.18.0
72
+ - peft==0.10.0
73
+ - safetensors==0.4.2
74
+ - evaluate==0.4.1
75
+ - bitsandbytes==0.43
76
+ - huggingface_hub==0.20.3
77
+ - seqeval==1.2.2
78
+ - optimum==1.17.1
79
+ - auto-gptq==0.7.1
80
+ - gpustat==1.1.1
81
+ - deepspeed==0.14.0
82
+ - wandb==0.16.3
83
+ - trl==0.8.1
84
+ - accelerate==0.28.0
85
+ - coloredlogs==15.0.1
86
+ - traitlets==5.14.1
87
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl
88
+
89
+ ### Hardware
90
+ - Cloud provided: runpod.io