--- license: mit library_name: "trl" tags: - KTO - WeniGPT base_model: HuggingFaceH4/zephyr-7b-beta model-index: - name: Weni/WeniGPT-QA-Zephyr-7B-4.0.2-KTO results: [] language: ['pt'] --- # Weni/WeniGPT-QA-Zephyr-7B-4.0.2-KTO This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta] on the dataset Weni/WeniGPT-QA-Binarized-1.2.0 with the KTO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/). Description: WeniGPT Experiment using KTO trainer with no collator It achieves the following results on the evaluation set: {'eval_loss': 0.030648991465568542, 'eval_runtime': 234.2131, 'eval_samples_per_second': 1.994, 'eval_steps_per_second': 0.999, 'eval_rewards/chosen': 5.51336669921875, 'eval_logps/chosen': -155.14308166503906, 'eval_rewards/rejected': -19.720834732055664, 'eval_logps/rejected': -384.9552001953125, 'eval_kl': 0.35056793689727783, 'eval_rewards/margins': 25.238788604736328, 'epoch': 0.73} ## Intended uses & limitations This model has not been trained to avoid specific intructions. ## Training procedure Finetuning was done on the model HuggingFaceH4/zephyr-7b-beta with the following prompt: ``` --------------------- Question: <|system|> Você é um médico tratando um paciente com amnésia. Para responder as perguntas do paciente, você irá ler um texto anteriormente para se contextualizar. Se você trouxer informações desconhecidas, fora do texto lido, poderá deixar o paciente confuso. Se o paciente fizer uma questão sobre informações não presentes no texto, você precisa responder de forma educada que você não tem informação suficiente para responder, pois se tentar responder, pode trazer informações que não ajudarão o paciente recuperar sua memória. Lembre, se não estiver no texto, você precisa responder de forma educada que você não tem informação suficiente para responder. Precisamos ajudar o paciente. <|user|> Contexto: {context} Questão: {question} <|assistant|> --------------------- Response: {response} --------------------- ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - per_device_train_batch_size: 4 - per_device_eval_batch_size: 2 - gradient_accumulation_steps: 8 - num_gpus: 8 - total_train_batch_size: 256 - optimizer: AdamW - lr_scheduler_type: cosine - num_steps: 96 - quantization_type: bitsandbytes - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",) ### Training results ### Framework versions - transformers==4.39.1 - datasets==2.18.0 - peft==0.10.0 - safetensors==0.4.2 - evaluate==0.4.1 - bitsandbytes==0.43 - huggingface_hub==0.20.3 - seqeval==1.2.2 - optimum==1.17.1 - auto-gptq==0.7.1 - gpustat==1.1.1 - deepspeed==0.14.0 - wandb==0.16.3 - # trl==0.8.1 - git+https://github.com/kawine/trl.git#egg=trl - accelerate==0.28.0 - coloredlogs==15.0.1 - traitlets==5.14.1 - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl ### Hardware - Cloud provided: runpod.io