ironrock commited on
Commit
2c273a9
1 Parent(s): dcb39b2

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +53 -38
README.md CHANGED
@@ -1,70 +1,85 @@
1
  ---
2
  license: mit
3
- library_name: peft
4
  tags:
5
- - trl
6
- - sft
7
  - SFT
8
  - WeniGPT
9
- - generated_from_trainer
10
  base_model: HuggingFaceH4/zephyr-7b-beta
11
  model-index:
12
- - name: WeniGPT-QA-Zephyr-7B-3.0.2-SFT
13
  results: []
 
14
  ---
15
 
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
 
19
- # WeniGPT-QA-Zephyr-7B-3.0.2-SFT
20
 
21
- This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 1.2788
24
 
25
- ## Model description
26
 
27
- More information needed
28
 
29
- ## Intended uses & limitations
30
 
31
- More information needed
32
 
33
- ## Training and evaluation data
 
 
 
 
34
 
35
- More information needed
 
 
 
 
36
 
37
- ## Training procedure
 
 
 
38
 
39
  ### Training hyperparameters
40
 
41
  The following hyperparameters were used during training:
42
  - learning_rate: 0.0002
43
- - train_batch_size: 2
44
- - eval_batch_size: 2
45
- - seed: 42
46
- - distributed_type: multi-GPU
47
- - num_devices: 4
48
  - gradient_accumulation_steps: 8
 
49
  - total_train_batch_size: 64
50
- - total_eval_batch_size: 8
51
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
- - lr_scheduler_type: linear
53
- - lr_scheduler_warmup_ratio: 0.03
54
- - training_steps: 96
55
- - mixed_precision_training: Native AMP
56
 
57
  ### Training results
58
 
59
- | Training Loss | Epoch | Step | Validation Loss |
60
- |:-------------:|:-----:|:----:|:---------------:|
61
- | 1.2981 | 1.52 | 50 | 1.3102 |
62
-
63
-
64
  ### Framework versions
65
 
66
- - PEFT 0.10.0
67
- - Transformers 4.39.1
68
- - Pytorch 2.1.0+cu118
69
- - Datasets 2.18.0
70
- - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ library_name: "trl"
4
  tags:
 
 
5
  - SFT
6
  - WeniGPT
 
7
  base_model: HuggingFaceH4/zephyr-7b-beta
8
  model-index:
9
+ - name: Weni/WeniGPT-QA-Zephyr-7B-3.0.2-SFT
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/WeniGPT-QA-Zephyr-7B-3.0.2-SFT
 
15
 
16
+ This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta] on the dataset Weni/WeniGPT-QA-Binarized-1.2.0 with the SFT trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
 
 
18
  It achieves the following results on the evaluation set:
19
+ {'eval_loss': 1.2787697315216064, 'eval_runtime': 97.2529, 'eval_samples_per_second': 2.406, 'eval_steps_per_second': 0.308, 'epoch': 2.92}
20
 
21
+ ## Intended uses & limitations
22
 
23
+ This model has not been trained to avoid specific intructions.
24
 
25
+ ## Training procedure
26
 
27
+ Finetuning was done on the model HuggingFaceH4/zephyr-7b-beta with the following prompt:
28
 
29
+ ```
30
+ ---------------------
31
+ Portuguese:
32
+ <|system|>
33
+ Você é um médico tratando um paciente com amnésia. Para responder as perguntas do paciente, você irá ler um texto anteriormente para se contextualizar. Se você trouxer informações desconhecidas, fora do texto lido, poderá deixar o paciente confuso. Se o paciente fizer uma questão sobre informações não presentes no texto, você precisa responder de forma educada que você não tem informação suficiente para responder, pois se tentar responder, pode trazer informações que não ajudarão o paciente recuperar sua memória. Lembre, se não estiver no texto, você precisa responder de forma educada que você não tem informação suficiente para responder. Precisamos ajudar o paciente.
34
 
35
+ Contexto: {context}</s>
36
+ <|user|>
37
+ {question}</s>
38
+ <|assistant|>
39
+ {chosen_response}</s>
40
 
41
+
42
+ ---------------------
43
+
44
+ ```
45
 
46
  ### Training hyperparameters
47
 
48
  The following hyperparameters were used during training:
49
  - learning_rate: 0.0002
50
+ - per_device_train_batch_size: 2
51
+ - per_device_eval_batch_size: 2
 
 
 
52
  - gradient_accumulation_steps: 8
53
+ - num_gpus: 4
54
  - total_train_batch_size: 64
55
+ - optimizer: AdamW
56
+ - lr_scheduler_type: cosine
57
+ - num_steps: 96
58
+ - quantization_type: bitsandbytes
59
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",)
 
60
 
61
  ### Training results
62
 
 
 
 
 
 
63
  ### Framework versions
64
 
65
+ - transformers==4.39.1
66
+ - datasets==2.18.0
67
+ - peft==0.10.0
68
+ - safetensors==0.4.2
69
+ - evaluate==0.4.1
70
+ - bitsandbytes==0.43
71
+ - huggingface_hub==0.20.3
72
+ - seqeval==1.2.2
73
+ - optimum==1.17.1
74
+ - auto-gptq==0.7.1
75
+ - gpustat==1.1.1
76
+ - deepspeed==0.14.0
77
+ - wandb==0.16.3
78
+ - trl==0.8.1
79
+ - accelerate==0.28.0
80
+ - coloredlogs==15.0.1
81
+ - traitlets==5.14.1
82
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl
83
+
84
+ ### Hardware
85
+ - Cloud provided: runpod.io