File size: 1,533 Bytes
0690acb
 
0dd025c
0690acb
0dd025c
 
 
 
0690acb
0dd025c
0690acb
 
 
0dd025c
 
0690acb
0dd025c
0690acb
0dd025c
0690acb
0dd025c
 
 
 
 
 
 
 
 
82cafd8
0dd025c
82cafd8
0dd025c
0690acb
0dd025c
0690acb
0dd025c
0690acb
0dd025c
0690acb
0dd025c
0690acb
0dd025c
0690acb
 
 
 
 
0dd025c
 
 
0690acb
 
0dd025c
 
 
 
 
0690acb
 
 
0dd025c
 
0690acb
 
0dd025c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: HuggingFaceH4/zephyr-7b-beta
model-index:
- name: WeniGPT-DPO-test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# WeniGPT-DPO-test

This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Rewards/chosen: 0.0
- Rewards/rejected: 0.0
- Rewards/accuracies: 0.0
- Rewards/margins: 0.0
- Logps/rejected: -12.7530
- Logps/chosen: -7.2418
- Logits/rejected: -2.2130
- Logits/chosen: -2.2118

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- PEFT 0.8.2
- Transformers 4.38.2
- Pytorch 2.1.0+cu118
- Datasets 2.17.1
- Tokenizers 0.15.1