File size: 3,294 Bytes
1c935f5
 
a24f94f
1c935f5
a24f94f
 
1c935f5
 
a24f94f
1c935f5
a24f94f
1c935f5
 
a24f94f
1c935f5
a24f94f
 
1c935f5
 
a24f94f
1c935f5
a24f94f
1c935f5
a24f94f
1c935f5
a24f94f
1c935f5
a24f94f
1c935f5
a24f94f
 
 
 
 
1c935f5
a24f94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c935f5
a24f94f
 
 
 
 
 
 
 
 
1c935f5
 
 
 
 
a24f94f
 
1c935f5
a24f94f
1c935f5
a24f94f
 
 
 
 
1c935f5
 
 
 
 
a24f94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: mit
library_name: "trl"
tags:
- KTO
- WeniGPT
base_model: HuggingFaceH4/zephyr-7b-beta
model-index:
- name: Weni/WeniGPT-Agents-Zephyr-1.0.7-KTO
  results: []
language: ['pt']
---

# Weni/WeniGPT-Agents-Zephyr-1.0.7-KTO

This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta] on the dataset Weni/wenigpt-agent-1.2.0-positive-kto with the KTO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
Description: Experiment with a strict verification of positive and negative examples

It achieves the following results on the evaluation set:
{'eval_loss': 0.16122232377529144, 'eval_runtime': 38.6397, 'eval_samples_per_second': 2.096, 'eval_steps_per_second': 0.543, 'eval_rewards/chosen': 3.168619155883789, 'eval_logps/chosen': -205.56210327148438, 'eval_rewards/rejected': -8.11664867401123, 'eval_logps/rejected': -361.947998046875, 'eval_kl': 7.762875556945801, 'eval_rewards/margins': 10.616473197937012, 'epoch': 2.97}

## Intended uses & limitations

This model has not been trained to avoid specific intructions. 

## Training procedure

Finetuning was done on the model HuggingFaceH4/zephyr-7b-beta with the following prompt:

```
---------------------
System_prompt:
Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
{instructions_formatted}

Na sua memória você tem esse contexto:
{context}

Lista de requisitos:
 - Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
 - Nunca traga informações do seu próprio conhecimento.
 - Repito é crucial que você responda usando apenas informações do contexto.
 - Nunca mencione o contexto fornecido.
 - Nunca mencione a pergunta fornecida.
 - Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
 - Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.


---------------------
Question:
{question}


---------------------
Response:
{answer}


---------------------

```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- per_device_train_batch_size: 4
- per_device_eval_batch_size: 4
- gradient_accumulation_steps: 4
- num_gpus: 1
- total_train_batch_size: 16
- optimizer: AdamW
- lr_scheduler_type: cosine
- num_steps: 135
- quantization_type: bitsandbytes
- LoRA: ("\n  - bits: 4\n  - use_exllama: True\n  - device_map: auto\n  - use_cache: False\n  - lora_r: 16\n  - lora_alpha: 32\n  - lora_dropout: 0.05\n  - bias: none\n  - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n  - task_type: CAUSAL_LM",)

### Training results

### Framework versions

- transformers==4.39.1
- datasets==2.18.0
- peft==0.10.0
- safetensors==0.4.2
- evaluate==0.4.1
- bitsandbytes==0.43
- huggingface_hub==0.20.3
- seqeval==1.2.2
- optimum==1.17.1
- auto-gptq==0.7.1
- gpustat==1.1.1
- deepspeed==0.14.0
- wandb==0.16.3
- # trl==0.8.1
- git+https://github.com/kawine/trl.git#egg=trl
- accelerate==0.28.0
- coloredlogs==15.0.1
- traitlets==5.14.1
- autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl

### Hardware
- Cloud provided: runpod.io