beamaia commited on
Commit
03f85f3
1 Parent(s): 7f35c9f

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +70 -41
README.md CHANGED
@@ -1,72 +1,101 @@
1
  ---
2
- library_name: peft
 
3
  tags:
4
- - trl
5
- - kto
6
  - KTO
7
  - WeniGPT
8
- - generated_from_trainer
9
  base_model: Weni/WeniGPT-Agents-Mistral-1.0.1-SFT-merged
10
  model-index:
11
- - name: WeniGPT-Agents-Mistral-4.0.0-KTO
12
  results: []
 
13
  ---
14
 
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
 
18
- # WeniGPT-Agents-Mistral-4.0.0-KTO
 
19
 
20
- This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.1-SFT-merged](https://huggingface.co/Weni/WeniGPT-Agents-Mistral-1.0.1-SFT-merged) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: nan
23
- - Rewards/chosen: -5.0053
24
- - Rewards/rejected: -5.3910
25
- - Rewards/margins: 0.3858
26
- - Kl: 0.0
27
- - Logps/chosen: -358.4791
28
- - Logps/rejected: -282.4818
29
 
30
- ## Model description
31
 
32
- More information needed
33
 
34
- ## Intended uses & limitations
35
 
36
- More information needed
37
 
38
- ## Training and evaluation data
 
 
 
 
39
 
40
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
- ## Training procedure
 
 
 
 
 
 
 
 
43
 
44
  ### Training hyperparameters
45
 
46
  The following hyperparameters were used during training:
47
  - learning_rate: 0.0002
48
- - train_batch_size: 1
49
- - eval_batch_size: 1
50
- - seed: 42
51
- - distributed_type: multi-GPU
52
- - num_devices: 4
53
  - gradient_accumulation_steps: 8
 
54
  - total_train_batch_size: 32
55
- - total_eval_batch_size: 4
56
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
- - lr_scheduler_type: linear
58
- - lr_scheduler_warmup_ratio: 0.03
59
- - training_steps: 23
60
- - mixed_precision_training: Native AMP
61
 
62
  ### Training results
63
 
64
-
65
-
66
  ### Framework versions
67
 
68
- - PEFT 0.10.0
69
- - Transformers 4.38.2
70
- - Pytorch 2.1.0+cu118
71
- - Datasets 2.18.0
72
- - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
 
 
5
  - KTO
6
  - WeniGPT
 
7
  base_model: Weni/WeniGPT-Agents-Mistral-1.0.1-SFT-merged
8
  model-index:
9
+ - name: Weni/WeniGPT-Agents-Mistral-4.0.0-KTO
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/WeniGPT-Agents-Mistral-4.0.0-KTO
 
15
 
16
+ This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.1-SFT-merged] on the dataset Weni/wenigpt-agent-1.4.0 with the KTO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
+ Description: Experiment with KTO and a new tokenizer configuration for chat template of mistral
18
 
 
19
  It achieves the following results on the evaluation set:
20
+ {'eval_loss': nan, 'eval_runtime': 37.5555, 'eval_samples_per_second': 5.805, 'eval_steps_per_second': 1.464, 'eval_rewards/chosen': -5.005271911621094, 'eval_rewards/rejected': -5.3910417556762695, 'eval_rewards/margins': 0.3857699930667877, 'eval_kl': 0.0, 'eval_logps/chosen': -358.4790954589844, 'eval_logps/rejected': -282.4818420410156, 'epoch': 0.88}
 
 
 
 
 
 
21
 
22
+ ## Intended uses & limitations
23
 
24
+ This model has not been trained to avoid specific intructions.
25
 
26
+ ## Training procedure
27
 
28
+ Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.1-SFT-merged with the following prompt:
29
 
30
+ ```
31
+ ---------------------
32
+ System_prompt:
33
+ Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
34
+ {instructions_formatted}
35
 
36
+ {context_statement}
37
+
38
+ Lista de requisitos:
39
+ - Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
40
+ - Nunca traga informações do seu próprio conhecimento.
41
+ - Repito é crucial que você responda usando apenas informações do contexto.
42
+ - Nunca mencione o contexto fornecido.
43
+ - Nunca mencione a pergunta fornecida.
44
+ - Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
45
+ - Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
46
+
47
+
48
+ ---------------------
49
+ Question:
50
+ {question}
51
 
52
+
53
+ ---------------------
54
+ Response:
55
+ {answer}
56
+
57
+
58
+ ---------------------
59
+
60
+ ```
61
 
62
  ### Training hyperparameters
63
 
64
  The following hyperparameters were used during training:
65
  - learning_rate: 0.0002
66
+ - per_device_train_batch_size: 1
67
+ - per_device_eval_batch_size: 1
 
 
 
68
  - gradient_accumulation_steps: 8
69
+ - num_gpus: 4
70
  - total_train_batch_size: 32
71
+ - optimizer: AdamW
72
+ - lr_scheduler_type: cosine
73
+ - num_steps: 23
74
+ - quantization_type: bitsandbytes
75
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 8\n - lora_alpha: 16\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",)
 
76
 
77
  ### Training results
78
 
 
 
79
  ### Framework versions
80
 
81
+ - transformers==4.38.2
82
+ - datasets==2.18.0
83
+ - peft==0.10.0
84
+ - safetensors==0.4.2
85
+ - evaluate==0.4.1
86
+ - bitsandbytes==0.43
87
+ - huggingface_hub==0.22.2
88
+ - seqeval==1.2.2
89
+ - optimum==1.18.1
90
+ - auto-gptq==0.7.1
91
+ - gpustat==1.1.1
92
+ - deepspeed==0.14.0
93
+ - wandb==0.16.6
94
+ - trl==0.8.1
95
+ - accelerate==0.29.2
96
+ - coloredlogs==15.0.1
97
+ - traitlets==5.14.2
98
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.4/autoawq-0.2.4+cu118-cp310-cp310-linux_x86_64.whl
99
+
100
+ ### Hardware
101
+ - Cloud provided: runpod.io